Наука. НДРС
Стосовно наукової роботи, слід зазначити, що кафедра фізики знаходиться у стані постійного наукового пошуку. Дослідження, що проводяться на кафедрі мають як теоретичну так і експериментальну базу.
Значні досягнення, як у теоретичному обґрунтуванні нагальних проблем сучасної фізики так і в практичних досягненнях мають такі науковці як Тулупенко В.М. та Білих В.Г. Їм належать розрахунки зонного спектру кремній-германієвих ям у наближенні методу ефективної маси з використанням гамільтоніану Латінжера-Кона 6х6. Слід зазначити, що вперше отримано аналітичне рішення подібної задачі, що дозволяє детально проаналізувати структуру спектру у підзонах розмірного квантування. Зокрема, прослідити вплив спін-орбітального відщепленої підзони на закони дисперсії легких і важких дірок.
Також були виявлені оптимальні параметри структури для отримання найбільшого впливу потенціалу іонізованої домішки на оптичні властивості гетероструктури. В числі таких: положення та ширина ?-шару, ширина квантової ями, оптимальна глибина залягання домішки. В подальшому заплановано замість оціночного методу використати чисельний розрахунок домішки.
У результаті проведених досліджень вперше виміряні спектри домішкової фотопровідності одноосевостиснутого (до 5.5 кБар) Ge:Ga у спектральній області 200-500 см-1. Виявлено смугу фотопровідності, яка обумовлена переходами з основного стану акцептора у відщеплену по енергії валентну підзону, що з ростом тиску зміщується в короткохвильову область відповідно збільшенню енергії розщеплення підзон. Зроблено розрахунки ефективного перетину домішкового розсіювання дірок при наявності резонансних домішкових станів. Показано, що наявність певної поляризаційної залежності спонтанного випромінювання з недеформованого p-Ge є наслідком анізотропного розподілу дірок в імпульсному просторі, в електричному полі. Розрахунки інтенсивності випромінювання при одноосьовому стисканні показали, що основний внесок в інтенсивність, у цьому випадку, вносять переходи за участю домішкових станів.
Виконано якісний аналіз процесу одержання інверсної заселеності за механізмом внутрішньоцентровї інверсії для Si/Si1-xGex структур з квантовою ямою, дельта-легованими бором у центр квантової ями. На основі експериментальних спостережень спонтанного TГц випромінювання, обговорюються переваги дельта-легування в край квантової ями в порівнянні з випадком дельта-легування в центр для одержання більш ефективного накачування електричним полем. Були виконані розрахунки енергетичного спектру квантової ями і коефіцієнту поглинання інфрачервоного випромінювання для між підзонних оптичних переходів.
Ще один науковець – Пєтухов В.В. займається пошуком і описом методів вимірювання товщини плівок (рентгенівський і інтерференційний). В рамках даної теми були досліджені наявні методики ПЕМ, ВІМС, рентгенодифракційного аналізу, інфрачервоної спектроскопії та наноіндентування. Розроблені методики і схеми устаткування для визначення електричних і фізико-механічних властивостей плівок.
Такі науковці як, Масич В.В., Богданова Т.Л. займаються впровадженням наукових досягнень в навчально-виховний процес. Вони займаються, зокрема, науковим пошуком у напрямах організації діалового навчання в практиці вищих навчальних закладів України і моделювання процесів інформаційної культури студентів технічних спеціальностей.
В даний час на кафедрі проводяться дослідження електро-фізичних, механічних, теплових і оптичних властивостей напівпровідників, напівпровідникових і металічних плівок. У перспективі очікується отримання нових знань стосовно поведінки домішок, а також розрахунки енергетичних спектрів нових матеріалів і наноструктур на їх підставі; побудова імітаційних фізичних моделей з отриманого теоретичного досвіду. І, що не менш, важливо впровадження в навчально-виховний процес отриманих технічних та науково-методичних досягнень.
Теми науково-дослідних робіт студентів
Завдання: розробити і опробовувати комп'ютерну модель фізичного явища.
Перелік явищ:
- Інтерференція світла в тонких плівках. Смуги рівного нахилу. Дослідження інтерференційної картини залежно від товщини плівки, кута падіння світла.
- Інтерференція світла в тонких плівках. Смуги рівної товщини. Дослідження інтерференційної картини залежно від кута нахилу клину.
- Дифракція Фраунгофера. Дослідження положення максимумів і мінімумів при падінні паралельного пучка світла на одну щілину, дві щілини і дифракційні гратки.
- Дифракційна гратка. Визначення довжини хвилі світла за допомогою дифракційних граток.
- Визначення вирішуючої сили, кутової і лінійної дисперсії світла за допомогою дифракційних граток.
- Моделювання електромагнітної хвилі.
- Поляризація світла. Вивчення міри поляризації залежно від кута падіння світла при його попаданні на діелектрик. (закон Брюстера).
- Поляризація світла. Закон Малюса. Дослідження залежності інтенсивності світла від кута падіння.
- Ефект Комптона. Дослідження залежності довжини хвилі розсіяного випромінювання від кута падіння.
- Модель абсолютно чорного тіла. Перевірка закону Стефана-Больцмана
- Тиск світла. Моделювання досліду Лебедєва.
- Тиск світла з точки зору фотонної теорії. Залежність тиску від кількості падаючих фотонів.
- Хвильові властивості мікрочастинок. Співвідношення невизначеностей Гейзенберга. Дослідження поведінки мікрочастинок залежно від розмірів перешкоди.
- Модель проходження електроном однієї щілини, двох щілин і дифракційних граток.
- Модель атома водню в квантово-механічній теорії.
- Модель атома водню по Бору.
- Моделювання p-n-переходу. Робота транзистора.