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KoBanescbkuii C.B. ([onbacvka Oepoicasna mawunobdyoiena akademis, m. Kpamamopcok-
Tepnonins, Ykpaina)

XXIII Mizknapoana naykosa koudepennis «HEHPOMEPEKXHI TEXHOJIOI'TI TA IX
3ACTOCYBAHHS - HMTi3-2024».

ILHIanoBHI KoJIern, YYAaCHUKH TA rocTi KOH(epeHuii!

Bin imeni opranizamiiiHoro komitety mupo Bitaro Bac Ha XXIII MixHapoaHiidi HayKOBii
koH(pepenii "Helipomeperxkni TexHoJI0r1i Ta iX 3actocyBanHs". Lle BU3Ha4HA 1MO/is Y HAYKOBOMY Ta
TEXHIYHOMY CBITi, sika 00’ €HYy€ MPOBITHUX YUYCHHX, JOCIIIHUKIB, IH)KEHEPIB 1 MPAKTHUKIB 13 PI3HUX
KYTOYKIB CBITYy. Bama mpucyTHICTh ChOTOHI € CBIIYCHHSM CHUIBHOI METH — CHPHATH PO3BUTKY
TEXHOJIOT1 MaiOyTHBOTO, SKI 3MIHIOIOTH HE JIMIIE HAayKy Ta IPOMHCIOBICTh, ajie W Haiie
MOBCSIKJICHHE JKUTTSI.

HeiipomepeskHi TEXHOIIOTIT € OHUM 13 HAUTIEPCIEKTUBHIIINX 1HCTPYMEHTIB CY4acHOCTI ISt
peatizailii iHHOBallil y PI3HUX Tany3sX €eKOHOMIKH. Ix morentias mossirae y 31aTHOCTI KapAHUHAIBHO
3MIHIOBATH MiIXOJU J0 BUPIIIEHHS CTpaTEriuHuX 3a/ay, 3a0e3meuyoyd epeKTUBHICTh, TOYHICTD 1
agantuBHicTh. ChOTOJHI BOHU CTalOTh OCHOBOIO JJIsSi aBTOMAaTH3allli MpOILECiB, aHAi3y HaHHX 1
MIPOTHO3YBaHHS TPEH/IIB, 1110 € KPUTUYHO BAXKIIMBUM y TUHAMIYHOMY CBITI.

ABTOMaTH3aIlis BUPOOHWYMX JIIHIK TaKOXX € BaXJIMBUM HampsMoMm. Helipomepexi
ONTHUMI3YyIOTh TApaMeTPH IMPOLIECIB y peaJbHOMY 4aci, 3a0e31euyroun BUCOKY SIKICTh MPOAYKILIl Ta
aJanTyl4uch A0 3MIHHUX yMOB. Hampukman, MeTonud HaBUaHHS 3 MIAKPIIUICHHAM J03BOJISIOTH
CUCTEMaM CaMOCTIHHO pearyBaTd Ha 3HOILIEHICTh 00JaJHaHHS YU 3MIHY XapaKTePUCTHK CHPOBHHU.
BukopucTtanHs 3ropTKOBUX HEHpoMmepex Uis aHalizy 300pa)KeHb aBTOMATH3ye€ KOHTPOIIb SIKOCTI,
BUSIBJISIIOUM HABITh HAMMEHIIN J1e(DeKTH.

VY MapKeTHHTy Ta YIpaBJliHHI JaHLOTaMM MOCTauyaHHs HelpoMmepeki 3a0e3MeuyoTh aHali3
BEJIMKHMX 00CATIB IaHUX, 1110 JO3BOJISIE€ IPOTHO3YBATH MOBEIIHKY CIIOXKHBAUiB, ONTUMI3yBaTH 3aMacu
i crBOproBaTH mepcoHanizoBaHi mpono3unii. Hampuknan, mozeni GPT i BERT crBOproroTh
IHTEPAKTUBHUM KIIE€HTCHKUN JTOCBiA, MIABHINYIOYM JOSIBHICTH 1 mpoaaxi. [[is mpoMucioBux
MiAIPUEMCTB 1€ 03HaYa€ MOXKIIMBICTh MIBUAKOT aanTailii 10 HOBUX pUHKOBUX BHMOT.

Jlns Ykpainu HelipoMepexHi TEXHOJIOT1] € YHIKaJIbHOI0 MO>KJIMBICTIO IHTErpyBaTH [HayCTpito
4.0, mo 6a3yeTbcsa Ha aBTOMaTH30BaHUX pimeHHsAX 1 [oT, ta miaroryBarucs no Ingyctpii 5.0, sika
aKIEHTY€E yBary Ha rapMoHii JIFOAMHHU i MaIivH. BoHU 103BOJISAIOTE CTBOPIOBATH JIFOIMHOLIEHTPUYHI
pillIeHHs, SK-OT PO3yMHI MICTa YM aBTOMAaTH30BaHI CHUCTEMH OXOPOHH 370pOB’s, 3a0e3nedyroun
€KOJIOT1YHY CTaNiCTh.

BigHOBIIEHHS TIPOMHCIIOBOTO, OCBITHBROTO Ta HAYKOBOTO IMIOTEHINIAy YKpaiHH TaKoX
MOXJIUBE 3aBJSIKM HEMpoMepekaMm. Y TPOMHUCIOBOCTI I CIpHUs€ MOJCpHi3allli oOJajHaHHS H
HiJBUIICHHIO eeKTUBHOCTI. B 0OCBITI aganTuBHI miuaTdopMu 3a0e3MedyroTh MiAroTOBKY (axiBIiB
JUIsL BUCOKOTEXHOJIOTIYHMX Tady3ei, a B Haylll BEJHKI JaHl NPUCKOPIOIOTH (yHIaMEHTaNbHI
JTOCIHIDKEHHS.

Takum 4uHOM, HEHpoMepexH! TEXHOJOrIl CTaloTh KIOYOBUM (PAKTOPOM EKOHOMIYHOIO
3pocTaHHs, TpaHC(OpMallii TPOMMCIOBOCTI Ta MiJBMIIEHHS SKOCTI KMTTS. IX BIPOBaIKEHHS
3abe3neuye GyHIAMEHT JJIs1 IHHOBAIIIH 1 BIATOBIAA€ BUKIUKAM CY4acHOCTI.

Kondepenuis, sky MU CbOTOJHI BIIKPHUBAEMO, IMPUCBAYEHA OOrOBOPEHHIO IEPEIOBUX
JOCTIKEeHb, IHHOBAIlI{ Ta MPaKTUYHUX PilIeHb y cepl HelipoMepekHUX TexHoorii. Le yHikanbHa
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maTdopma, Je MOENHYIOThCS TEOPETHYHI OCHOBH, 1H)KEHEPHI PO3POOKH Ta MIKIUCITUTUTIHAPHUI
X1,

[{poropiunuii 30ipHUK HAayKOBUX Ipalb KOH(EpeHLii Bpakae CBOEI Pi3HOMAHITHICTIO. Y
HbOMY TPEJCTaBICHO OUIbII 45 myOsikaiii, ki JEMOHCTPYIOTh TNIMOUHY 1 IMHUPOTY JAOCIIIKEHb Y
chepi Helipomepex. MU TakoX 3 TOPAICTIO MOKEMO CKa3aTH, 1110 KOH(EpeHIIisl cTajia MalJaHIMKOM
JUTSL MIXKHAPOJIHOT CIIBIIpaIll. YYacHUKHU 3 OUTBII HIXK IECATH KpaiH AUIATHCS CBOIMH JTOCATHEHHSIMH,
JIOCBIZIOM 1 OadeHHsSM MaiOyTHROTO. Lle He NuIe MOXIIHMBICTH MPE3EHTYBATH CBOI poOOTH, ane i
3HAWTU TapTHEPIB MJs CHUIBHUX JIOCHIIKEHb, 3all0YaTKyBaTH HOBI MPOEKTH Ta CHPUATU
dhopMyBaHHIO TJI00ATBHOI MEPEXKi 3HAHB.

Crporojni nepen HaMH CTOITh 3aBJIaHHS HE JIUIIE OOrOBOPUTU Cy4acHHM CTaH HaykKu, aje i
OKpPECIUTH IULSIXH ii po3BUTKY. Hexail g koH(epeH1ist cTaHe JKepesioM HaTXHeHHsI, HOBUX i7el Ta
pIIIEHB, K1 JIONOMOXYTh CTBOPUTH TEXHOJIOTTYHO JOCKOHAIE MaiiOyTHE.

[lupo Gakaro BCIM ydyaCHHKaM IUTITHOI pOOOTH, 3MICTOBHUX JWCKYCId Ta HOBHX HAayKOBUX
BiIKpUTTIB. PazoM Mu popmyemMo HayKoOBY CHUIBHOTY, 3J4aTHY BIUIMBAaTH Ha PO3BHUTOK CY4acCHOTO
CBITY.

Dear Colleagues, Participants, and Guests of the Conference!

On behalf of the Organizing Committee, I am honored to welcome you to the XXIII
International Scientific Conference "Neural Network Technologies and Their Applications.” This
event represents a significant milestone in the scientific and technical community, bringing together
leading scientists, researchers, engineers, and practitioners from around the globe. Your presence here
today reflects our shared mission — to advance future technologies that transform not only science
and industry but also our everyday lives.

Neural network technologies are among the most promising tools of our time for
implementing innovations across various economic sectors. Their potential lies in their ability to
fundamentally change approaches to solving strategic problems, ensuring efficiency, precision, and
adaptability. Today, they form the foundation for process automation, data analysis, and trend
forecasting, which are critically important in our rapidly evolving world.

Another important application area is the automation of production lines. Neural networks
optimize process parameters in real-time, maintaining high product quality and adapting to changing
conditions. For example, reinforcement learning methods allow systems to independently respond to
equipment wear or changes in raw material properties. The use of convolutional neural networks for
image analysis also automates quality control, detecting even the smallest defects.

In marketing and supply chain management, neural networks enable the analysis of large
datasets from sources such as online sales or social media. This helps predict consumer behavior,
optimize inventory, and create personalized offers. Models like GPT and BERT enhance the customer
experience, boosting loyalty and sales. For industrial enterprises, this means the ability to quickly
adapt production lines to new market demands.

For Ukraine, neural network technologies present a unique opportunity to integrate Industry
4.0, based on automated solutions and IoT, and prepare for Industry 5.0, which emphasizes harmony
between humans and machines. They enable the creation of human-centered solutions, such as smart
cities and automated healthcare systems, while ensuring ecological sustainability.



The restoration of Ukraine’s industrial, educational, and scientific potential is also achievable
through neural networks. In industry, they drive equipment modernization and productivity
improvements. In education, adaptive platforms prepare specialists for high-tech fields, while in
science, big data accelerates fundamental research.

Thus, neural network technologies are becoming a key factor in economic growth, industrial
transformation, and improving quality of life. Their implementation lays the foundation for
innovation and addresses contemporary challenges.

The conference we are inaugurating today is dedicated to discussing cutting-edge research,
innovations, and practical solutions in the field of neural network technologies. It is a unique platform
where theoretical foundations, engineering developments, and interdisciplinary approaches converge.

This year’s conference proceedings are impressive in their diversity, featuring over 45
publications that demonstrate the depth and breadth of research in the field. We are also proud to note
that this conference serves as a platform for international collaboration. Participants from more than
ten countries are sharing their achievements, experiences, and visions for the future. This is not only
an opportunity to present one’s work but also to find partners for joint research, initiate new projects,
and contribute to the formation of a global knowledge network.

Today, we are tasked not only with discussing the current state of science but also with
outlining its future directions. May this conference be a source of inspiration, new ideas, and solutions
that help create a technologically advanced future.

I sincerely wish all participants productive work, meaningful discussions, and groundbreaking
scientific discoveries. Together, we are building a scientific community capable of influencing the
development of the modern world.

With respect,

Sergiy Kovalevskyy

Chair of the Organizing Committee,
Doctor of Technical Sciences, Professor
Donbas State Engineering Academy
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Andrij Medvid, Vitaliy Yakovyna (Lviv Polytechnic National University, Lviv, Ukraine)

ROBOT SELF COLLISION PREDICTION USING KOLMOGOROV-ARNOLD
NETWORKS

Abstract: Collision detection is essential for ensuring the safety of robotic manipulators, particularly when
robotic arms operate within complex environments. Self-collision detection, involving contacts between various parts of
a robotic arm or between the arm and its base, often represents a computational bottleneck for path planning.
Conventional physics-based and geometric collision-checking approaches, such as those using PyBullet, offer high
accuracy but can be computationally expensive, limiting their utility for real-time applications. To address this challenge,
we present a novel approach employing Kolmogorov-Arnold Networks (KAN) to predict self-collisions for a robotic
manipulator mounted on a mobile base. Using a dataset of 10 million randomly generated states, labeled as colliding or
non-colliding via the PyBullet library, we trained KAN implementation with modified parameters, including a spline
order of 2 and grid size of 4. Our model achieved over 98% prediction accuracy on a held-out test set while providing
significant speed improvements when using batching. Specifically, the KAN model processed approximately 93,728 test
states per second, which is more than 20 times faster than the PyBullet library. Key contributions of this work include the
application of KAN for fast self-collision prediction, a comparison of its performance with fully-connected networks and
conventional simulation-based methods. This study underscores the effectiveness of neural network-based approaches
for balancing speed and accuracy in collision detection, offering a scalable solution for complex robotic applications like
trajectory planning.

Keywors: robotic manipulators, Kolmogorov-Arnold Networks (KAN), collision detection, machine learning.

1. Introduction

Collision detection is critical to ensure the safe operation of systems with robotic
manipulators, especially when robotic arms interact with their environment. Self-collision can be
defined as a situation where different parts of a robotic arm come into contact with each other or with
the robot's base. Collision detection is the most time consuming part of the most robotic arm path
planning methods. Conventional collision-checking algorithms often rely on physics simulations or
geometric models, such as those implemented using libraries like PyBullet [2]. While these
approaches provide high accuracy, they can be computationally expensive, especially when applied
to large numbers of states. Real-time applications, such as robotic path planning, require faster and
more scalable methods to estimate potential collisions while maintaining reasonable accuracy.

In recent years, machine learning techniques have been explored as an alternative to traditional
physics-based simulation methods for predicting collisions. In this work Kolmogorov-Arnold
Network (KAN) [1] was trained to predict collisions between arm, arm tool and robot base. Our
choice of network architecture reasoned by the ability of KAN to approximate complex, nonlinear
functions with high precision. In this study, we utilize an efficient KAN implementation [3] to predict
self-collisions for a robotic manipulator mounted on a moving base.

To train the KAN model, we generated a dataset comprising 10 million random arm states
sampled uniformly across joint limits. Each state was labeled as either colliding or non-colliding
based on comprehensive checks using PyBullet simulations. The model's performance was evaluated
on a held-out test set, achieving over 98% accuracy in predicting self-collisions. Furthermore, our
approach demonstrated significant speed improvements when evaluating large batches of states
compared to traditional methods.

The primary contributions of this paper are as follows:

) We introduce the application of KAN for efficient self-collision prediction of
the robot.
) We compare the predictive performance and computational speed of our

approach with physics-based simulation methods.
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° We demonstrate the practical utility of using KAN for preliminary collision
estimation, making it suitable for applications such as trajectory planning where rapid
assessments of multiple states are necessary.

The remainder of this paper is structured as follows: Section 2 reviews related work in
collision detection for robotic systems. Section 3 outlines our methodology, including data generation
and the KAN architecture used. Section 4 presents the results of our experiments, while Section 5
discusses the implications and limitations of our approach. Finally, Section 6 concludes the paper
with a summary of findings and potential future work.

2. Related Work

In recent years, neural networks have been increasingly applied to collision detection in
robotic systems, offering promising alternatives to traditional model-based methods. This section
reviews notable studies that have utilized neural network architectures for collision detection,
summarizing their methodologies and key findings.

Sharkawy and Aspragathos (2018) developed a neural network-based approach for human-
robot collision detection [4]. They designed a multi-output neural network trained using data from
the coupled dynamics of a manipulator, both with and without external contacts. The network utilized
intrinsic joint position and torque sensors to detect unwanted collisions and identify the specific
collided link. This method demonstrated effective collision detection capabilities, enhancing safety
in human-robot interactions.

Czubenko and Kowalczuk (2021) proposed a simple neural network architecture for collision
detection in collaborative robots [5]. They implemented a virtual force and torque sensor using a
neural network, which was tested on the CURAG robot prototype. The study compared four different
approaches: auto-regressive, recurrent neural network, convolutional long short-term memory, and
mixed convolutional LSTM network (MC-LSTM). The MC-LSTM architecture achieved the highest
effectiveness, with a mean absolute prediction error of approximately 22 Nm and a collision detection
F1 score of 0.85.

Xu et al. (2020) presented a deep learning approach for collision detection in industrial
collaborative robots [6]. They designed a deep neural network model to learn robot collision signals
and recognize collision occurrences. This data-driven method unified feature extraction from high-
dimensional signals and decision processes, demonstrating improved collision detection performance
in industrial settings.

In the article "Neural Network Design for Manipulator Collision Detection Based Only on the
Joint Position Sensors" by Sharkawy, Koustoumpardis, and Aspragathos (2020), the authors present
a neural network-based method for detecting collisions in robotic manipulators using only joint
position sensor data [7]. The proposed approach eliminates the need for additional force or torque
sensors, making it cost-effective and simplifying integration. The neural network learns to identify
collisions based on variations in joint positions caused by external contacts. Experimental validation
demonstrated the approach's capability to accurately detect collisions, offering a promising solution
for improving the safety of robotic systems.

These studies highlight the potential of neural network-based methods to enhance collision
detection in robotic systems, offering improvements in detection accuracy, robustness, and
computational efficiency over traditional approaches.

3. Methodology

Robot Model and Problem Setup
In this work we are training a neural network to predict self collisions of a robot. We used a
design of a robot produced by Somatic Holdings LTD. It's a bathroom cleaning robot and it consists
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of a mobile robot platform, 7-dof robotic arm and tools (like sprayer, vacuum, blower, etc) installed
on a platform. Robotic arm could pick up one of these tools at a time and manipulate it.

Robot manipulates in a dense and dynamic environment so it should check for collisions with
a lot of objects and a part of this problem is also to check self collisions of a robot (collision between
platform, arm picked tool and arm with itself). Collision checking is a time consuming problem so
we trained a neural network to predict self collisions faster.

Data Generation and Labeling

We generated a dataset of 10 million test cases with a C++ code using PyBullet library. One
test case consists of arm state (7 float angles of arm joints) and a label (0.0 if no collision in this state
and 1.0 if there is at least one collision). Each arm state was generated uniformly in every joint limits
of a xArm7 (robotic arm installed on a robot). Joint limits of xArm7 you may find in table 1:

Table 1. Joint limits for xArm7 robotic arm [8]

Joint number 0 1 2 3 4 5 6

Minimum angle -360° -118° -360° -11° -360° -97° -360°

Maximum angle 360° 120° 360° 225° 360° 180° 360°

Resulting dataset was split into training and testing parts in proportion of 80/20.

Kolmogorov-Arnold Networks (KAN) Implementation

We used an “efficient KAN” implementation of the Kolmogorov-Arnold Network (KAN) [3],
with minor adjustments to the default parameters. Specifically, we set the spline order to 2 and the
grid size to 4. The training was conducted using a batch size of 1024 and an initial learning rate of
0.005, which was decayed every 10 steps with a gamma value of 0.9997. The mean squared error
(MSE) criterion was used as the loss function.

Prior to being fed into the model, the input arm joint angles were transformed by replacing
each angle with its sine and cosine values to better capture the periodic nature of the data. The KAN
architecture utilized consisted of layers with sizes defined as:

[2 x joints_count, 128, 128, 128, 1].

Performance Metrics

To evaluate the performance of our Kolmogorov-Arnold Network (KAN) implementation for
predicting self-collisions in the robotic manipulator, we employed several key metrics to assess model
accuracy, computational efficiency, and overall robustness.

First, the output of the neural network was thresholded at 0.5, such that predictions below this
threshold were classified as 0.0 (indicating no collision) and predictions equal to or above 0.5 were
classified as 1.0 (indicating a collision). This binary classification enabled straightforward evaluation
of the model’s predictive capabilities.

We calculated the counts of true positives (correctly predicted collisions), true negatives
(correctly predicted non-collisions), false positives (incorrectly predicted collisions), and false
negatives (missed collisions) using the test portion of our dataset. From these values, we derived key
performance metrics, including prediction accuracy, which was computed as the percentage of correct
predictions among all test cases.

To assess computational efficiency, we measured the inference time of the KAN model and
compared it against the time required for traditional collision checking using the PyBullet physics
simulation library. All tests were performed on an NVIDIA GeForce RTX 3050 GPU to ensure
consistent and reliable performance benchmarks.
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4. Results and Analysis

After 15 epochs of training on 8 million training cases, we achieved the following results on
our 2 million test cases: 991,509 true positive cases, 978,147 true negative cases, 15,502 false
negative cases, and 14,842 false positive cases. The test data is well-balanced between positive and
negative cases, allowing for a robust evaluation of the model’s predictive performance. The prediction
accuracy was calculated as follows:

oo+ oo 991,509 + 978,147
HIRININIEE = . ! ~(0.984
0g = 00 4+ 00 + 00 + 00 991,509 + 978,147 + 15,502 + 14,842 0.9848
= 08.48%

The total inference time for processing the 2 million test states with a batch size of 1024 was
21.3383 seconds, resulting in a processing rate of approximately 93,728 test states per second. This
represents a significant improvement in speed compared to the generation of test data using the
PyBullet library, which processed approximately 4,460 states per second. However, when the batch
size was reduced to 1, the network’s performance dropped considerably to 1,140 states per second,
demonstrating the importance of batch processing for maximizing inference efficiency.

Model comparison

To compare the efficiency of KAN and standard fully-connected networks we repeat the same
training process but with a few different fully-connected architectures. In this section we represent
the comparison with fully-connected architecture which achieved the best results among others.

The network takes a 14-dimensional input (which is sine and cosine transformations of 7 joint
angles) and processes it through three fully-connected layers. Each layer is followed by a nonlinear
activation function, except the final layer, which uses a sigmoid activation for binary classification.
The detailed architecture is as follows:

1. Input Layer: Accepts a 14-dimensional input vector representing joint angle features.

2. First Hidden Layer: A fully-connected layer with 2048 neurons, followed by a SiLU
(Sigmoid Linear Unit) activation function.

3. Second Hidden Layer: A fully-connected layer with 512 neurons, followed by a SiLU
activation function.

4. Output Layer: A fully-connected layer with a single neuron, followed by a sigmoid
activation function to output a predicted value between 0 and 1.

KAN outperformed fully-connected networks for self-collision prediction, achieving higher
accuracy (98.48% vs. 98.0%) and comparable inference times. Comparison of different performance
parameter you may find in table 2:

Table 2. Results of training KAN and fully-connected network

Model True True False False Accurac | Inference
Positive | Negative | Positive Negative |y, % Time
cases cases cases cases (batch size =
1024),
seconds
KAN 991509 978147 14842 15502 98.48 21.34
Fully- 988752 971271 19849 20128 98.0 16.6
connected
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5. Discussion

The results of our experiments highlight the potential of using Kolmogorov-Arnold Networks
(KAN) for predicting self-collisions in robotic manipulators. By leveraging an efficient
implementation of KAN with spline order 2 and grid size 4, we achieved a high prediction accuracy
of 98.48% on a well-balanced dataset consisting of 10 million states (8 million training states and 2
million test states).

The main advantage of our approach lies in its computational efficiency during batch
processing. When evaluating test states with a batch size of 1024, our KAN-based model processed
approximately 93,728 states per second — substantially outperforming traditional collision-checking
methods using the PyBullet physics simulation library, which achieved a throughput of around 4,460
states per second. This remarkable speedup highlights the potential of KAN for tasks that require
rapid evaluation of large numbers of states, such as trajectory optimization, motion planning, and
safety assessments for robots operating in dynamic environments.

However, our results also indicate certain limitations and areas for improvement. Notably, the
network’s performance dropped significantly when the batch size was reduced to 1, processing only
1,140 states per second. This suggests that the efficiency gains from the usage of neural networks are
highly dependent on batch processing, and further optimization may be required to enhance single-
state inference performance. This limitation could impact scenarios where real-time evaluation of
individual states is necessary, such as adaptive control in rapidly changing environments.

Moreover, Kolmogorov-Arnold Networks (KAN) demonstrated advantages over standard
fully-connected networks in this study, particularly for predicting self-collisions in robotic
manipulators. The KAN architecture, leveraging its structured decomposition of multivariate
functions, achieved higher accuracy with comparable training time and infer time. These results
highlight KAN's ability to balance computational efficiency and predictive accuracy compared to
fully-connected networks.

It is important to emphasize that the use of KAN for collision prediction is particularly suitable
for applications where a small trade-off in accuracy is acceptable in exchange for significant gains in
speed. For example, rapid collision assessment can be used as a preliminary filter in trajectory
planning, reducing the computational burden on more accurate but slower physics-based methods.
Future research may explore hybrid approaches that combine KAN-based predictions with traditional
collision-checking algorithms to strike an optimal balance between speed and accuracy.

6. Conclusion

Our work demonstrates that KAN-based models can be an effective tool for efficient self-
collision prediction in robotic systems. The proposed approach provides significant computational
speedups while maintaining a high level of predictive accuracy, making it suitable for applications
requiring rapid evaluation of large numbers of states. The demonstrated capability to process over
93,000 states per second in batch mode represents a significant improvement over traditional physics-
based methods, showcasing the potential of KAN to accelerate tasks such as trajectory planning,
safety verification, and dynamic motion adjustments.

Despite these strengths, there are areas for further exploration and improvement. Enhancing
the model's performance for single-state inference could expand its applicability to scenarios that
demand real-time, state-by-state evaluations. Additionally, exploring alternative representations of
input data and refining model architectures could lead to further improvements in accuracy and
generalization.

Looking ahead, we see potential in integrating KAN-based predictions with hybrid systems
that combine neural network inference with traditional collision-checking algorithms. Such
combinations could provide an optimal balance between speed and precision, enabling more efficient
and robust solutions for complex robotic systems. As robotic applications become increasingly
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sophisticated and widespread, methods that balance computational efficiency and predictive accuracy
are likely to play a key role in advancing the capabilities and safety of autonomous systems.
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ANALYSIS OF THE EFFICIENCY OF NEURAL NETWORKS IN AUTONOMOUS
CONTROL SYSTEMS COMPARED TO TRADITIONAL APPROACHES

Abstract: This study investigates the advantages and disadvantages of using neural networks (NNs) in autonomous
control systems for mobile technological machines compared to traditional algorithmic approaches. While traditional
methods excel in predictable environments with predefined rules, neural networks demonstrate superior adaptability,
scalability, and robustness in dynamic and unstructured settings. This paper conducts a comparative analysis, focusing
on performance metrics such as decision-making accuracy, computational efficiency, scalability, and robustness under
uncertain conditions. A case study of autonomous vehicles is included to demonstrate the practical implications of both
approaches.

Keywords: neural networks, autonomous control, mobile machines, traditional methods, adaptability, scalability,
robustness, decision-making.

1. Introduction

Autonomous control systems are increasingly employed across industries, including
transportation, agriculture, logistics, and defense. These systems traditionally rely on deterministic
algorithms for decision-making and control. However, with the advent of machine learning (ML),
especially neural networks, a paradigm shift is occurring. NNs offer the ability to learn from data and
adapt to changing environments, making them appealing for complex tasks. This paper examines the
comparative efficiency of neural networks and traditional approaches, highlighting the trade-offs in
various performance domains.

2. Traditional Approaches in Autonomous Control Systems

Traditional approaches to autonomous control systems have been the backbone of technological
automation for decades. These methods rely on deterministic logic and well-defined mathematical
frameworks, which are particularly effective in structured environments. Below, the key components
of these approaches are detailed further to showcase their strengths, applications, and limitations.

2.1 Predefined Rules and Logic-Based Models

Predefined rule-based systems operate by following explicit, manually coded rules and
conditions. These systems are constructed using if-then-else logic, which provides clear, deterministic
pathways for decision-making.

Characteristics:

- Deterministic Nature: These systems perform reliably in scenarios with well-understood and
predictable dynamics.

- Ease of Implementation: The logic is straightforward to program and debug, making it highly
accessible for practical applications.

- Examples: Early traffic signal controllers, robotic arms in factories, and decision-making in
simple automated vehicles.

Applications:

- Environments where the rules are static and the external variables are controlled, such as
assembly lines or warehouse automation.

- Systems requiring strict safety guarantees, such as medical robots performing predefined
tasks.

Limitations:

—Rule-based systems struggle in environments with high variability or uncertainty. For
example, a robot navigating a cluttered room with unexpected obstacles would need an unmanageable
number of rules to handle all possible scenarios.

- They lack adaptability, as any change in the environment requires manual updates to the rules.
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2.2 Path Planning Algorithms

Path planning algorithms are crucial in autonomous systems, enabling machines to navigate
from a start point to a goal while avoiding obstacles. These algorithms use geometric and heuristic
methods to determine the most efficient route.

Key Algorithms:

1. Dijkstra's Algorithm:

- Description: A graph-based algorithm that finds the shortest path between two nodes in a
weighted graph.

- Advantages: Guarantees the optimal path if all edge weights are non-negative.

— Applications: Navigation systems in robotics and GPS for finding the shortest driving route.

- Limitations: Computationally expensive for large graphs due to exhaustive exploration.

2. A (A-Star) Algorithm:*

- Description: An extension of Dijkstra's algorithm that incorporates a heuristic function to
prioritize exploration, making it faster.

- Advantages: Balances optimality and computational efficiency by focusing on promising
paths first.

- Applications: Widely used in real-time robotic navigation, video game Al, and unmanned
aerial vehicle (UAV) route planning.

- Limitations: Performance heavily depends on the quality of the heuristic function.

3. RRT (Rapidly-Exploring Random Trees):

- Description: A probabilistic algorithm designed to handle high-dimensional spaces by
incrementally building a tree structure that explores the environment.

- Advantages: Well-suited for navigating complex environments, especially with dynamic
obstacles.

— Applications: Used in robotic arm trajectory planning, self-driving cars, and drone navigation.

- Limitations: The solution is not always optimal, and computation can become intensive in
highly constrained environments.

Strengths of Path Planning Algorithms:

- Proven mathematical foundations ensure predictable and safe navigation.

- Highly effective in structured or semi-structured environments, such as indoor robotics or
urban roads with mapped terrain.

Challenges:

- They require precise and often pre-existing maps of the environment.

- Struggle in dynamic or unknown environments without constant updates.

- Limited ability to handle ambiguous or incomplete data, such as uncertain obstacle locations.

2.3 Control Strategies

Once the path is planned, control strategies ensure the system follows it accurately. These
strategies handle the system’s movement, stability, and interaction with its environment.

Notable Control Strategies:

1. PID (Proportional-Integral-Derivative) Controllers:

—Description: A control loop feedback mechanism that adjusts the system's output to match a
desired setpoint by minimizing the error between the current state and the target.

Components:

—Proportional Term: Directly proportional to the error, providing immediate corrective action.

—Integral Term: Accounts for accumulated errors over time, addressing steady-state offsets.

—Derivative Term: Predicts future error trends to counteract overshooting.

Advantages:

- Simplicity and robustness make PID controllers widely used.

- Effective for maintaining stability and responsiveness in systems like drones, automated
vehicles, and industrial robots.

Limitations:

—Performance degrades in non-linear or highly dynamic systems.

—Requires manual tuning of parameters, which can be time-consuming and context-dependent.

2. Model Predictive Control (MPC):
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—Description: An advanced control technique that predicts future system behavior and
optimizes control actions over a time horizon.

—Advantages: Ideal for complex, multi-variable systems with constraints, such as controlling a
swarm of drones or optimizing energy usage in electric vehicles.

—Limitations: Computationally intensive, requiring significant processing power.

3. Bang-Bang Control:

—Description: A simple on-off control strategy, where the system switches between extreme
states to reach a desired outcome.

—Applications: Thermostats and simple robotics.

—Limitations: Not suitable for systems requiring precision or smooth operation.

Strengths of Control Strategies:

—Provide stability and responsiveness, ensuring that the system operates reliably within its
physical constraints.

—Well-suited for tasks where the environment is largely predictable and changes are gradual.

—Challenges:

—Performance is highly dependent on accurate system modeling.

—Complex, dynamic systems often require more adaptive or intelligent methods, such as neural
networks.

2.4 Summary of Traditional Approaches

Traditional approaches, with their emphasis on predefined logic, well-tested algorithms, and
structured control strategies, have been pivotal in advancing autonomous technologies. They are
reliable, computationally efficient, and easy to implement in controlled settings. However, they face
significant limitations in environments where uncertainty, dynamic obstacles, and incomplete data
dominate. These shortcomings pave the way for more adaptive and intelligent solutions, such as
neural networks, to handle the increasing complexity of modern autonomous systems.

This detailed exploration sets the stage for comparing these traditional methods with neural
network-based approaches in the subsequent sections of the study.

3. Neural Networks in Autonomous Control Systems

Neural networks, particularly deep learning models, have gained traction due to their ability to
process large datasets and discover patterns. Popular NN architectures in autonomous systems
include:

—Convolutional Neural Networks (CNNs): For image recognition and obstacle detection.

—Recurrent Neural Networks (RNNSs): For sequential data and predictive control.

—Reinforcement Learning (RL): For decision-making under uncertainty.

Key benefits of NNs:

1. Adaptability: Ability to learn from real-world data and generalize to new scenarios.
2. Robustness: High tolerance for noise and uncertainty in sensor inputs.

3. Automation: Reduces reliance on human-crafted rules.

Challenges include:
—High Computational Costs: Training and inference require significant resources.
—Opaqueness: Neural networks are often black boxes, complicating debugging and validation.

—Data Dependency: The performance of NNs heavily relies on the quality and quantity of
training data.

4. Comparative Analysis

4.1 Decision-Making Accuracy
—Traditional Methods: Perform well in controlled environments but struggle with variability.

—Neural Networks: Achieve higher accuracy in recognizing patterns and anomalies in dynamic
environments (e.g., pedestrian detection in autonomous vehicles).
4.2 Computational Efficiency

—Traditional Methods: Computationally lightweight, enabling faster real-time responses.
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—Neural Networks: Require GPUs and optimized frameworks but can be accelerated with
techniques like model compression.

4.3 Robustness to Uncertainty

—Traditional Methods: Limited by predefined conditions, leading to failures in unpredictable
scenarios.

—Neural Networks: Reinforcement learning-based approaches demonstrate robust performance
in uncertain and unstructured environments.

4.4 Scalability

—Traditional Methods: Face exponential complexity in multi-agent or large-scale systems.

—Neural Networks: Can scale effectively with parallel architectures and training on distributed
systems.

5. Case Study: Autonomous Vehicles

Obijective: To compare the performance of traditional and NN-based control systems in a self-
driving vehicle navigation task.

Setup:

—Scenario: Urban navigation with dynamic obstacles.

—Traditional Approach: Rule-based control combined with A* path planning.

—Neural Network Approach: Reinforcement learning using a Deep Q-Network (DQN).

Results:

1. Accuracy: The NN system avoided 15% more obstacles than the traditional system.
2. Adaptability: The NN system adjusted to unexpected obstacles 50% faster.

3. Efficiency: Traditional systems achieved lower latency, but the NN system

demonstrated improved long-term learning.

6. Discussion

The findings highlight the trade-offs between traditional and NN-based approaches. While
traditional systems remain valuable for tasks requiring high predictability and low latency, neural
networks excel in dynamic, complex, and data-rich environments. The combination of both
approaches—hybrid systems—may provide the optimal balance of performance, efficiency, and
adaptability.

7. CONCLUSION

This study underscores the transformative potential of neural networks in autonomous control
systems, particularly for tasks requiring high adaptability and robustness. Future research should
focus on developing hybrid frameworks that leverage the strengths of both paradigms, optimizing
computational efficiency, and addressing challenges related to explainability and data dependence.
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CLOUD-BASED LANDMINE DETECTION SERVICE WITH MESSENGER BOT
INTEGRATION

Abstract. The problem of landmine recognition is critically important in Ukraine, where millions of unexploded
ordnances pose a significant threat. This study describes the architecture and implementation of a cloud-based landmine
detection service accessible through messenger bots. This approach leverages the capabilities of smartphones and cloud
technologies to provide a widely accessible and efficient tool for landmine identification. The system utilizes Google
Cloud Functions for image processing and machine learning model execution, with a messenger bot serving as the user
interface. The bot facilitates user interaction by sending photos of suspicious objects for analysis and returning
recognition results. This comprehensive approach aims to improve the safety and efficiency of demining operations while
raising public awareness about the dangers of landmines.

Keywords: landmine recognition, cloud-based detection, messenger bots, smartphones, machine learning,
google cloud functions, demining operations, public awareness

1. Problem statement

The ongoing aggression of russia in Ukraine has left a devastating legacy of landmines and
unexploded ordnance, posing a significant and persistent threat to human life and hindering post-
conflict recovery efforts. Current estimates indicate that a vast area of the country, up to 128,000
square kilometers of land and 13,000 square kilometers of water, is contaminated [1]. Traditional
methods for detecting and clearing these explosive remnants are often slow, dangerous, and resource-
intensive, highlighting the urgent need for innovative solutions that can accelerate the demining
process while ensuring the safety of personnel and civilians.

This study aims to address this critical challenge by developing and evaluating a novel cloud-
based landmine detection service that leverages the accessibility of messenger bots and the power of
artificial intelligence. By harnessing the capabilities of widely available smartphones and the
scalability of cloud computing, this research seeks to provide a user-friendly and efficient tool for
landmine identification.  The proposed solution allows users to simply submit photos of
suspicious objects to a messenger bot for analysis, with the service employing sophisticated machine
learning models to provide real-time assessments of the likelihood of a landmine.

To achieve this objective, the study focuses on the following key tasks:

— Develop a cloud-based landmine detection service using Google Cloud Platform [2].

— Design and implement a messenger bot [3] interface for user interaction with the service.

— Integrate the system with Google Gemini [4] to provide users with additional information
about detected landmines.

This research seeks to contribute to the advancement of landmine detection technology by
providing a practical, accessible, and efficient solution that can be readily deployed in real-world
scenarios. By empowering individuals with the ability to quickly and accurately identify potential
explosive threats, this study aims to support humanitarian demining efforts, enhance public safety,
and contribute to the long-term recovery of Ukraine.

2. Related work

This research builds upon previous work [5-6] that explored the development of machine
learning models for landmine recognition, including the use of data augmentation and 3D-printing to
overcome data scarcity. While these studies demonstrated the potential of Al for landmine detection,
a key challenge remained: how to deliver these powerful models to those who need them most, in the
field. This requires a solution that is readily accessible, user-friendly, and adaptable to diverse
environments and user needs.

Existing mobile applications in the domain of mine action primarily focus on landmine
awareness and reporting [7], but lack the capability for automated landmine recognition. This gap
presents a significant opportunity to leverage the ubiquity of smartphones and the power of cloud
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computing to create a more proactive and efficient approach to landmine detection.

3. Unresolved parts of the problem

While previous research [5-6] has demonstrated the potential of artificial intelligence and
machine learning for landmine detection, including the use of data augmentation and 3D-printing to
create robust training datasets, a critical gap remains in translating these advancements into practical
tools readily available to those working on the ground.

This study addresses the limitations of existing landmine detection methods by developing a
novel cloud-based service that is:

— Highly accessible: Available through widely used messenger apps, enabling access on
virtually any smartphone with an internet connection.

— User-friendly: The messenger bot interface provides a simple and intuitive way to interact
with the service, requiring minimal technical expertise.

— Real-time capable: Leverages cloud computing to provide rapid image processing and
analysis, delivering near real-time results.

— Seamlessly integrated: Utilizes existing messenger platforms to integrate with
communication channels already used by demining teams and stakeholders.

4. Purpose of the work and setting of tasks
By creating and testing a novel cloud-based landmine detection service that makes use of
messenger bot accessibility and artificial intelligence, this project seeks to address this pressing issue.
This research aims to offer an effective and user-friendly solution for landmine identification by
utilizing the scalability of cloud computing and the capabilities of widely available mobile devices.
This approach offers significant advantages over traditional methods, which are often slow
and resource-intensive. By combining the power of Al, cloud computing, and messenger bots, this
research provides a more accessible, efficient, and user-friendly solution to the urgent challenge of
landmine detection.
To achieve this, the study focused on the following tasks:
o Develop a cloud-based landmine detection service.
o Design and implement a messenger bot interface.
« Integrate the system with Google Gemini.

5. System design and implementation

The landmine detection service utilizes Google Cloud Functions to execute machine learning
models and process images efficiently. A messenger bot acts as the user interface, facilitating
interaction with the service. Users submit images of suspicious objects to the bot, which then sends
them to the cloud for analysis. The results, including the likelihood of a landmine and its potential
type, are returned to the user through the bot. This architecture allows for seamless integration with
various messenger platforms and ensures flexibility for future adaptations.

5.1. System Architecture
The system is designed with a modular architecture, comprising three main components:

o Messenger Bot: This component serves as the user interface, allowing users to interact with
the service through a messenger app. It receives images from users, sends them to the cloud
for processing, and returns the analysis results.

e Cloud Functions: These functions, hosted on the Google Cloud Platform, handle image
processing and analysis. They receive images from the messenger bot and invoke the
landmine recognition module.

e Landmine Recognition Module: This module utilizes pre-trained machine learning models
and the YOLO algorithm [8] to detect and classify landmines in the images. The inference
process is implemented using the Roboflow [9] service, which is used to process model
requests.
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This modular design allows for independent development and optimization of each
component, ensuring flexibility and scalability. The use of cloud functions enables efficient resource
utilization and fast response times, while the messenger bot interface provides a user-friendly and
accessible way to interact with the service (Fig. 1).

o B
|

o

Figure 1. Architecture of system

5.2. Implementation Details

The messenger bot is developed using Python and a suitable bot framework [10]. It
communicates with the Google Cloud Platform via a webhook, enabling seamless communication
between the user interface and the cloud-based processing functions.

The Cloud Functions are also written in Python and utilize the Google Cloud Functions
framework. Upon receiving an image from the messenger bot, a Cloud Function is triggered to verify
the image format and perform pre-processing steps. It then invokes the landmine recognition module,
passing the processed image as input.

The landmine recognition module employs a pre-trained YOLOv8 model, that is hosted on
Roboflow platform. The model is fine-tuned on a diverse dataset of landmine images. This dataset
includes real-world images and synthetic images generated through data augmentation and 3D-
printed replicas.

5.3. Integration with Google Gemini
To provide users with more information about detected landmines, the system integrates with

Google Gemini. When the recognition module identifies a potential landmine, the bot automatically
queries Google Gemini with the identified landmine type. Google Gemini then provides a concise
summary (Fig. 2) of information about the landmine, which may include:

o Country of origin

o Main characteristics (type, weight, size)

o Method of use (laying and activation)

« Additional information (links, installation specifics)
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Figure 2. Screenshot of the bot. Photos Forester

This integration enhances the user's understanding of the potential danger and facilitates
informed decision-making. The messenger bot is currently focused on interacting with demining
professionals. For this purpose, the bot is integrated with a specialized forum for deminers. When the
bot detects a landmine, it provides information about it and links to a relevant discussion on the forum.
This allows deminers to quickly exchange information, coordinate their actions, and jointly develop
strategies. The bot could also be used for a wider audience, such as in cooperation with international
organizations. In this case, instead of linking to a specialized forum, the bot could provide links to
relevant articles on landmine safety, contacts of emergency services, and instructions on how to act
when a suspicious object is detected. This would raise public awareness and promote safer behavior
around landmines. The bot supports two interface languages: Ukrainian and English. The interface
language is determined automatically based on the user's language. In addition to the main recognition
function, the bot offers several additional features, such as the ability to request to add a landmine,
view a list of recognized landmines, and provide feedback.

CONCLUSIONS

The developed messenger bot demonstrates the potential of using modern technologies, such
as machine learning models and cloud platforms, to address the urgent problem of landmine detection.
The bot's integration with Google Cloud Platform and Roboflow API that runs YOLOv8 model
ensures high recognition accuracy and fast data processing. The use of Telegram as an interface
makes the bot accessible to a wide range of users, and integration with Google Gemini allows
providing additional information about the detected landmine. The bot can be a useful tool for both
professional deminers and ordinary citizens who may encounter explosive devices. It will help
improve the efficiency and safety of the demining, as well as raise awareness of landmine safety. The
project is under active development, and we are constantly working to improve the bot and enhance
the accuracy of the recognition models. One of the key aspects of this process is analyzing errors and
adding relevant images to the model's training set. This allows the system to “learn from its mistakes”
and improve the efficiency of landmine detection with each iteration.

In the future, it is planned to expand the bot's functionality by adding the ability to recognize
more types of landmines, as well as integrate it with other platforms and messengers.
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ARTIFICIAL INTELLIGENCE AS ADRIVER OF TERRITORIAL COMMUNITY
DEVELOPMENT

Abstract: In today's world, artificial intelligence (Al) has become a key tool for transforming social systems
and governance. This article examines the potential of using Al for the development of territorial communities. Al-
based solutions are proposed for analysis, planning, and resource optimization, improving citizens' quality of life, and
ensuring sustainable community development. Special attention is paid to the impact of intelligent systems on human
capital, management processes, and social cohesion.

Keywords: artificial intelligence, territorial communities, human capital, sustainable development, innovation,
optimization.

Sustainable development of a state is impossible without purposeful and systematic efforts
aimed at building and strengthening human potential, which forms the foundation for the effective
functioning of all levels of public administration. This task is equally important for large cities as
well as for the smallest settlements in the country. However, while in metropolises, issues of staffing
are mostly addressed thanks to the concentration of educational, professional, and social resources,
the newly formed united territorial communities face a critical scale of staffing crises. An acute
shortage of qualified specialists capable of ensuring effective governance creates significant
challenges for these communities. Consequently, the development of human potential becomes
particularly important under the conditions formed by the administrative-territorial reform [1].
Demographic reproduction and effective regulation of migration processes must become strategic
tasks of national significance, implemented with consideration of regional specificities. At the same
time, local self-government institutions must actively engage in this process, initiating and
implementing measures aimed at preserving and strengthening human potential. These challenges
require new approaches to governance, one of which is the integration of Al technologies.

Artificial intelligence opens new opportunities for the comprehensive development of
communities by providing tools for analysis, planning, resource optimization, and enhancing social
cohesion. With its ability to process vast amounts of data, Al facilitates informed decision-making
focused on long-term results. Al algorithms can automate decision-making processes, improve the
quality of forecasting, and ensure more efficient utilization of human potential.

In the field of staffing, Al helps address the issue of a shortage of qualified workers. Intelligent
systems can analyze labor market needs in real-time, identify training directions required to fill gaps,
and create personalized educational programs. Al-driven monitoring of labor market changes
promotes rapid professional reorientation, adapting the population to the new economic conditions.
Additionally, optimizing infrastructure solutions and ensuring resource efficiency are crucial areas of
Al application. Smart urban infrastructure planning includes optimizing logistics, urban transport,
and energy consumption, based on real data and forecasts. Digital twins of communities enable the
modeling and testing of management decisions in a virtual environment, avoiding the risk of real
losses.

Social cohesion in communities also benefits from new tools enabled by artificial intelligence.
Analytical platforms allow for assessing the level of citizen engagement, identifying problem areas,
and fostering the development of communities. European experience in using artificial intelligence
(Al) in the development of territorial communities demonstrates the practical effectiveness and
significant potential of these technologies in addressing pressing social, economic, and environmental
challenges.
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In France, artificial intelligence (Al) plays a key role in planning public transport systems [2].
By utilizing large datasets on transport flows, population mobility, and environmental indicators, Al
helps design more efficient transport routes, reducing travel time and minimizing congestion.
Specifically, intelligent systems analyze real-time data on road congestion and suggest alternative
routes for both public and private transportation. Additionally, Al is employed to model the
environmental impact of transport systems. These models enable cities to implement strategies for
reducing CO, emissions, such as electrifying public transport or creating networks of bicycle lanes.
In Paris, such initiatives have already reduced transport emissions by 20% over the past five years.

In Germany, Al is actively used to analyze and evaluate the efficiency of infrastructure
investments in local communities [3]. Digital platforms have been developed to integrate financial,
demographic, and infrastructure data, allowing local governments to assess the impact of investments
on community development. For instance, Al platforms study the relationship between investments
in road infrastructure and the economic activity of local businesses, helping identify the most
promising areas for funding. These systems enable local governments to make data-driven decisions,
improving efficiency and reducing the risk of misusing funds.

In Sweden, the implementation of intelligent systems is focused on optimizing housing
construction and urban resource management processes [4]. Using Al, municipalities model various
development scenarios, considering factors such as population growth, housing demand,
infrastructure availability, and environmental impact. Integrated systems help forecast the need for
housing over the next decades, plan energy-efficient developments, and provide citizens with
affordable housing. For example, in Stockholm, Al is used to create "smart" districts featuring energy-
saving systems, automated water supply management, and waste disposal. Additionally, Al helps
Swedish municipalities allocate resources more effectively. By utilizing predictive algorithms,
municipalities can plan the supply of energy, water, and other resources according to peak loads and
demand fluctuations, avoiding overuse and ensuring sustainable development.

In the United Kingdom, artificial intelligence is widely used to optimize energy consumption
and improve social services in communities [5]. Intelligent systems analyze real-time energy usage
data, enabling demand forecasting and preventing grid overloads. For instance, in London, "smart
grids" automatically adjust electricity supply based on consumption in different parts of the city.
Furthermore, in the field of social services, Al is used to analyze data on public health, social
assistance, and employment. In Manchester, for example, an Al-based system helps allocate social
resources more quickly to support low-income families, people with disabilities, and the unemployed.
This significantly improves the efficiency of budget use and ensures more targeted assistance.

Estonia is a pioneer in using Al to digitize public services, and this experience is actively
applied in local communities [6]. Intelligent systems support electronic voting, access to
administrative services, and automatic updates of citizen records. This significantly reduces
bureaucratic procedures and ensures transparency in governance. In particular, small Estonian
communities have developed Al-based chatbots that help citizens obtain answers to administrative
inquiries without visiting physical offices. This improves service accessibility for residents in remote
areas and promotes inclusivity in interaction with local government bodies.

In the Netherlands, where a significant portion of the territory lies below sea level [7], Al is
used for water resource management and flood prevention. Intelligent systems monitor the condition
of dams, rivers, and canals, predicting potential water level rises by analyzing weather data and
climate change models.

Finland uses artificial intelligence to improve its healthcare system [8]. Communities have
developed Al-based medical platforms that analyze patients’ medical histories, test results, and
provide personalized recommendations for disease prevention. For example, Helsinki operates an
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early diagnosis system that uses machine learning algorithms to identify cardiovascular disease risks.
Additionally, Al optimizes the operations of medical institutions by forecasting hospital and clinic
workloads. This ensures an even distribution of patients and reduces waiting times.

Conclusion. The integration of Al into territorial community management processes opens
new opportunities for sustainable development, improving the quality of life, and efficient resource
utilization. Intelligent systems have the potential to significantly reduce costs, enhance social
cohesion, and create new opportunities for innovative growth. By adapting European experiences,
Ukraine can successfully overcome current challenges and ensure effective community development.
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INNOVATIVE APPROACHES TO LEARNING AND ADAPTIVE LEARNING

Abstract: Integrating adaptive and personalized learning strategies has become a transformative approach in
modern education, offering students a tailored experience that aligns closely with their unique learning needs,
preferences, and progress. Both methods focus on adjusting learning paths to optimize the effectiveness of education, yet
each has a distinct role. When combined, they create a dynamic system that can significantly enhance learning outcomes,
reduce achievement gaps, and foster a more inclusive and engaging learning environment.

Keywords: integrating adaptive and personalized learning, teaching, studies

1. INTRODUCTION

Innovative Approaches to Learning :

« Active Learning: Encourages student engagement through activities like group discussions,
problem-solving, and hands-on experiments, improving retention and critical thinking.

o Project-Based Learning (PBL): Involves students tackling real-world challenges, helping
them to apply theoretical knowledge practically. PBL fosters skills such as teamwork,
problem-solving, and creativity.

o Blended Learning: Combines in-person and online experiences, allowing for more flexible
pacing and access to resources. This approach often uses digital tools for assessments,
feedback, and self-paced study.

Adaptive Learning :

o Definition and Purpose: Adaptive learning uses technology to modify the delivery of
educational material based on a learner's current knowledge and performance. It’s widely used
in online platforms and learning management systems.

o How It Works: Adaptive systems analyze student progress, typically using Al algorithms, to
determine their strengths and areas for improvement. This real-time analysis adjusts the
complexity and type of content presented to optimize learning outcomes.

« Benefits: Provides a personalized experience that can help struggling students receive more
support while allowing advanced students to progress quickly.

Personalized Educational Programs :

o Individual Learning Plans (ILPs): Tailored to each student’s goals, strengths, and
weaknesses, ILPs are particularly effective in K-12 and higher education settings. They allow
for goals to be set, tracked, and adjusted based on progress.

o Data-Driven Insights: Personalized programs leverage data from assessments, attendance,
and student engagement to provide educators with insights into each student’s needs, leading
to targeted interventions.

o Competency-Based Learning: This model allows students to progress as they demonstrate
mastery, regardless of time, pace, or place. It's effective in vocational and adult learning,
helping learners acquire skills relevant to career paths.

Integrating Adaptive and Personalized Learning for Greater Impact :

o Adaptive and personalized learning are complementary. For example, an adaptive learning
platform could support a personalized educational program by continuously adjusting content
to align with a learner's ILP. This synergy maximizes learning efficiency and satisfaction,
particularly in environments with diverse learning needs.

These approaches together promote a more inclusive, engaging, and efficient educational experience
that’s increasingly valuable in today’s knowledge-driven world.
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2. INTEGRATING ADAPTIVE AND PERSONALIZED LEARNING FOR GREATER
IMPACT

Integrating adaptive and personalized learning strategies has become a transformative
approach in modern education, offering students a tailored experience that aligns closely with their
unique learning needs, preferences, and progress. Both methods focus on adjusting learning paths to
optimize the effectiveness of education, yet each has a distinct role. When combined, they create a
dynamic system that can significantly enhance learning outcomes, reduce achievement gaps, and
foster a more inclusive and engaging learning environment.

Adaptive learning is a technology-driven approach that modifies the presentation of educational
content in real-time, responding to a student’s ongoing performance and engagement levels. Adaptive
learning systems are often powered by artificial intelligence (Al) and machine learning algorithms
that analyze a range of data points, such as a student’s correct or incorrect answers, time spent on
each activity, and even the types of mistakes made. Based on this analysis, the system adjusts the
lesson difficulty, pacing, or type of content to best meet the student’s immediate needs.

For example:

o Real-time Feedback: Adaptive platforms provide instant feedback, helping students
understand their mistakes and correct them promptly. This minimizes frustration and
improves retention.

o Customized Difficulty: If a student consistently excels in a specific area, the system can
increase the difficulty level, challenging them to deepen their understanding. Conversely, if a
student struggles, the system may simplify content or offer additional support materials, such
as tutorials or hints.

Personalized learning takes a broader, holistic approach. It’s about tailoring the entire educational
experience—qoals, resources, pacing, and content—to fit an individual student’s preferences, needs,
and learning style. Unlike adaptive learning, which primarily operates through Al-driven adjustments,
personalized learning involves educators, instructional designers, and the learners themselves in
crafting a customized learning path. This often includes setting specific goals, selecting resources,
and modifying teaching strategies to align with the learner's strengths, challenges, and interests.
Components of personalized learning may include :

e Individual Learning Plans (ILPs): These are structured programs developed collaboratively
by educators, learners, and sometimes parents. ILPs set clear, individualized goals, learning
objectives, and timelines that guide a student’s academic journey.

o Competency-Based Progression: Personalized learning frequently incorporates competency-
based models, where students advance once they demonstrate mastery of a concept or skill,
rather than based on time spent on a subject.

o Flexible Learning Modalities: Personalized learning often supports different learning
modalities, such as visual, auditory, or kinesthetic, adapting materials to align with the
student’s preferred learning style.

Integrating adaptive learning into a personalized education plan can significantly enhance the benefits
of both approaches. Here’s how they can work in tandem for greater impact:

1. Data-Driven Personalization Adaptive systems continuously collect and analyze data on
student interactions. This data feeds into the personalized learning framework, allowing
educators to make informed decisions. For instance, if an adaptive learning platform identifies
that a student struggles with specific math concepts, this data can prompt a teacher to
incorporate supplemental lessons or alternative explanations into the student’s individual
learning plan.

2. Customized Pacing and Content Delivery One of the most significant advantages of this
integration is the ability to adjust pacing in real-time, respecting each student’s learning speed.
For instance, in a classroom with diverse learning abilities, the adaptive system can ensure
that advanced students continue progressing without waiting, while those who need additional
time receive targeted support to master foundational concepts. This individualized pacing
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prevents students from feeling rushed or held back, fostering a more productive and less
stressful learning environment.

Enhanced Student Engagement and Motivation Adaptive learning platforms help keep
students engaged by offering challenges suited to their current abilities. When combined with
a personalized learning approach, students not only see materials at an appropriate difficulty
level but also work toward goals that are meaningful to them. This synergy promotes intrinsic
motivation as students understand that their learning journey is unique and directly tied to
their individual aspirations and needs.

Empowering Educators with Actionable Insights Adaptive learning tools provide real-time
insights into student performance, giving educators valuable information that they can use to
support personalized interventions. For instance, teachers can receive alerts when a student is
consistently underperforming in a specific area, prompting timely, personalized assistance.
With a clearer understanding of each student’s strengths and weaknesses, teachers can adjust
lesson plans, group students strategically, and provide tailored support where it’s most
needed.

Developing Critical Thinking and Problem-Solving Skills The integration of adaptive and
personalized learning encourages a deeper, more active learning experience. By challenging
students to think critically and solve problems at their individual level, these approaches help
cultivate essential skills for the future. Personalized projects that build on concepts covered
in adaptive platforms can help students apply knowledge in real-world contexts, fostering a
higher level of cognitive engagement.

Building Lifelong Learning Skills Integrating these approaches fosters self-directed learning
and metacognitive skills, which are essential for lifelong learning. Adaptive systems provide
immediate feedback that encourages self-reflection and problem-solving. Simultaneously, a
personalized approach allows students to set goals and track their progress, teaching them
how to manage and take responsibility for their own learning journey. Together, these
methods help students become more independent and motivated learners.

Supporting Inclusive Education and Reducing Achievement Gaps Both adaptive and
personalized learning can help address the challenges faced by students from diverse
backgrounds. Adaptive systems ensure that no student falls behind, as they automatically
adjust to meet each learner's level, while personalized learning accommodates different
learning styles and goals. This combined approach can be particularly beneficial in diverse
classrooms, ensuring that all students have equal opportunities to succeed regardless of their
starting point.

While the integration of adaptive and personalized learning offers many benefits, it’s not without
challenges:

Infrastructure and Resource Requirements: Schools and institutions need sufficient resources,
including technology, training, and time, to implement these systems effectively.

Privacy and Data Security: With extensive data collection on student performance, schools
must ensure compliance with privacy standards and protect sensitive student information.
Balancing Automation and Human Interaction: Adaptive learning systems should
complement, not replace, the human element in teaching. Educators play an essential role in
personalizing learning and providing emotional and motivational support, which cannot be
fully replaced by Al.

3. INNOVATIVE APPROACHES TO LEARNING AND ADAPTIVE LEARNING

In the evolving landscape of education, traditional teaching methods are being complemented

and, in many cases, transformed by innovative approaches that focus on creating more engaging,
personalized, and effective learning experiences. These methods aim to cultivate not only academic
knowledge but also critical thinking, collaboration, creativity, and adaptability—skills essential for
success in today’s fast-paced world. Below is a deeper exploration of some of the most impactful and
innovative approaches to learning.

31



Active learning shifts the focus from passive reception of information to active engagement with the
material. Instead of listening to a lecture, students are encouraged to participate through activities that
involve analyzing, discussing, or solving problems. This method has shown to improve retention and
understanding because students actively work with the concepts they are learning.

o Examples of Active Learning Strategies:

o Think-Pair-Share: Students think about a question individually, discuss it with a
partner, and then share their insights with the class. This approach helps students
process their thoughts and builds communication skills.

o Case Studies: By examining real-world examples, students apply theoretical concepts
to practical scenarios, which enhances critical thinking and decision-making abilities.

o Problem-Based Learning (PBL): Students are given a complex problem and must
work together to find a solution, often without direct guidance. This builds
independence, teamwork, and problem-solving skills.

Project-Based Learning is an approach where students work on a project over an extended period,
from several days to an entire term. These projects typically involve complex, real-world problems
or challenges, and require students to research, plan, and execute a solution. The process of working
on a project teaches students a range of valuable skills, such as time management, collaboration, and
critical thinking.

o How PBL Works:

o Choosing the Project: Ideally, projects are chosen based on students' interests,
making them more motivated to engage deeply with the topic.

o Research and Exploration: Students must conduct research, often requiring them to
go beyond the textbook and explore various sources, such as interviews, online
databases, and empirical experiments.

o Presenting Solutions: At the end of the project, students typically present their
findings or products to the class, a broader audience, or community members,
reinforcing their communication skills and giving them a sense of accomplishment.

« Benefits of PBL: Project-based learning allows students to see the relevance of what they are
studying and understand its application in the real world. Additionally, PBL fosters a deeper
understanding of the subject matter, as students are not just memorizing facts but working
through challenges that require them to apply knowledge in practical ways.

Blended learning combines traditional face-to-face instruction with online or digital learning. This
approach leverages the strengths of both in-person and digital education, creating a more flexible and
adaptable learning environment.

o Blended Learning Models:

o Flipped Classroom: In this model, students learn new content at home through video
lectures, readings, or online modules, and then apply what they’ve learned in the
classroom through activities and discussions with their teacher and peers.

o Station Rotation: In a station rotation model, students rotate through different
learning stations, some of which are online, while others involve teacher-led
instruction or collaborative work.

o Self-Paced Learning: This model allows students to progress through online modules
at their own pace, with teachers available to provide support as needed.

o Advantages of Blended Learning:

o Flexibility: Students can learn at a pace that suits them, revisiting materials or moving
ahead as needed.

o Personalized Feedback: Online platforms can provide instant feedback, helping
students understand their mistakes and make adjustments in real-time.

o Improved Engagement: By incorporating various types of media, such as videos,
quizzes, and interactive simulations, blended learning keeps students engaged and
makes learning more dynamic.

Gamification integrates game-like elements into learning activities to increase motivation,
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engagement, and retention. By incorporating features like rewards, levels, and challenges, gamified
learning makes educational content more appealing and can be particularly effective for younger
students.

o Key Components of Gamified Learning:

o Points and Rewards: Students earn points or badges for completing tasks, which
gives them a sense of accomplishment and encourages continued effort.

o Levels and Progression: As students complete tasks, they can “level up” to more
challenging content, creating a structured progression that maintains interest.

o Competition and Collaboration: Some gamified learning experiences encourage
friendly competition between students or collaborative efforts to reach shared goals.

« Benefits of Gamification:

o Increased Motivation: The gaming elements make learning more enjoyable,
encouraging students to take on challenges and persist even when the material is
difficult.

o Immediate Feedback: In a gamified environment, students often receive immediate
feedback, which reinforces learning and enables quick corrections.

o Skill Building: Many educational games emphasize skills like problem-solving,
strategic thinking, and hand-eye coordination, which complement traditional learning
objectives.

Experiential learning is based on the principle that students learn best by doing. It emphasizes
hands-on experiences, reflection, and real-world applications, allowing students to learn through
direct involvement.

o Examples of Experiential Learning Activities:

o Internships and Apprenticeships: By working in a real job setting, students gain
practical skills and insight into their field of interest.

o Service Learning: This combines academic study with community service, helping
students apply their knowledge to help others while gaining an understanding of
societal issues.

o Simulations and Labs: Simulations in fields like science, engineering, and healthcare
allow students to apply theoretical knowledge in controlled, realistic settings.

o Advantages:

o Deeper Understanding: Hands-on experiences help students connect theoretical
concepts to real-world applications, deepening their understanding and memory
retention.

o Development of Soft Skills: Experiential learning develops skills such as
communication, empathy, adaptability, and resilience.

o Enhanced Career Readiness: By gaining real-world experience, students are better
prepared for professional roles, with practical skills that can be immediately applied.

Social and collaborative learning is based on the idea that learning is a social process. By engaging
in discussions, group work, and peer-to-peer interactions, students can deepen their understanding of
concepts, clarify misunderstandings, and build interpersonal skills.

o Collaborative Learning Techniques:

o Peer Teaching: Students take turns teaching each other, which reinforces their own
understanding and encourages cooperative learning.

o Group Projects: These projects require students to work together towards a common
goal, often requiring them to plan, delegate tasks, and resolve conflicts.

o Discussion Forums: Online or in-person discussion forums enable students to share
insights, ask questions, and learn from each other’s perspectives.

o Benefits of Social and Collaborative Learning:

o Enhanced Critical Thinking: By discussing different viewpoints, students develop
critical thinking skills and learn to evaluate arguments.
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o Increased Engagement: Working with peers can make learning more enjoyable and
motivating.

o Skill Building: Collaboration teaches students essential social skills, such as
communication, empathy, and teamwork.

Inquiry-based learning encourages students to ask questions and seek answers through
investigation, exploration, and research. This approach fosters curiosity and encourages a proactive
approach to learning, empowering students to become self-motivated, lifelong learners.

o Stages of Inquiry-Based Learning:

o Questioning: Students start by asking questions about a topic or problem.

o Research and Investigation: They gather information, conduct experiments, or
engage in discussions to explore potential answers.

o Solution or Conclusion: Based on their research, students draw conclusions or solve
the problem.

o Reflection: Students reflect on their learning experience and the knowledge they
gained, reinforcing the inquiry process.

o Benefits of Inquiry-Based Learning:

o Development of Research Skills: Students learn how to gather and evaluate
information, an essential skill for academic and professional success.

o Increased Curiosity and Independence: By guiding their own learning, students
develop a love for learning and the ability to learn independently.

o Improved Problem-Solving Abilities: Inquiry-based learning teaches students to
think critically and solve problems logically and creatively.

Adaptive learning is an advanced educational approach that leverages technology to create a
customized learning experience for each student. This method uses data-driven algorithms, artificial
intelligence (Al), and machine learning to assess individual student performance and adapt
instructional content in real time. By doing so, adaptive learning personalizes the pace, path, and
presentation of material to match each learner's strengths, weaknesses, preferences, and progress.
Core Principles of Adaptive Learning :

1. Personalization: At its core, adaptive learning is about creating a tailored learning
experience. The technology behind it collects data on how a student interacts with the content,
their accuracy, and speed in answering questions, as well as other factors. This allows the
system to present material that suits their current understanding, adjusting complexity, format,
or feedback as needed.

2. Real-Time Adjustment: Adaptive systems are designed to adjust the learning path based on
real-time feedback from students. As they progress through lessons, the software analyzes
their responses to continually provide content that aligns with their evolving level of
comprehension and ability.

3. Continuous Assessment: Rather than relying solely on traditional assessments, adaptive
learning platforms conduct continuous assessments. This means the software is constantly
monitoring students' interactions and progress, allowing it to identify and respond to learning
gaps or misunderstandings immediately.

4. Data-Driven Insights: Adaptive learning platforms rely heavily on data analytics to monitor
individual and group performance. This data can provide educators with actionable insights
into students’ progress, highlighting areas where they excel or need additional support.

The adaptive learning process involves several key components that work together to provide a

responsive learning experience:

1. Initial Diagnostic Assessment: Many adaptive platforms begin with an assessment to gauge
the student’s starting point. This baseline data helps the system understand the student’s initial
strengths and areas for improvement, creating a foundation for the personalized learning path.

2. Content Delivery and Interaction: Based on the diagnostic results, the system provides
tailored content, which could include videos, interactive quizzes, readings, or practice
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exercises. As the student interacts with the material, the platform continuously collects data
on their performance and engagement.

Real-Time Adjustments: Adaptive learning systems track metrics such as time spent on each
task, accuracy, the number of attempts needed, and patterns of responses. Using this
information, the platform can adapt the level of difficulty, suggest additional resources, or
offer hints when a student is struggling.

Ongoing Feedback and Support: Students receive immediate feedback, which is essential
for effective learning. If a student answers a question incorrectly, the system might provide
an explanation or guide them through a simpler problem before progressing. This feedback
loop ensures that students correct misunderstandings early, building a stronger foundation for
future learning.

Progress Monitoring and Reporting: Adaptive platforms provide both students and
educators with insights into performance. Teachers can use these reports to adjust
instructional strategies or group students for targeted support.

Adaptive learning offers numerous benefits for students, educators, and institutions alike:

1.

Enhanced Learning Outcomes: Adaptive learning systems identify gaps in understanding
early and adjust content to reinforce foundational concepts. This helps students develop a
strong grasp of essential skills before advancing to more complex topics, improving overall
learning outcomes.

Individualized Pacing: One of the most significant advantages of adaptive learning is that
students can learn at their own pace. High-performing students can move through material
more quickly, while those who need extra time or support aren’t left behind. This pacing
flexibility accommodates different learning speeds, reducing stress and boosting confidence.
Efficient Use of Time: Adaptive systems streamline the learning process by focusing on areas
where students need improvement. Rather than spending time on content they already
understand, students can concentrate on areas that require more attention, making their study
time more productive.

Increased Student Engagement: Adaptive learning platforms often use engaging, interactive
content that holds students' attention and makes learning more enjoyable. By adjusting to each
learner’s level, the system keeps content challenging but achievable, promoting intrinsic
motivation.

Immediate Feedback and Correction: The instant feedback that adaptive systems provide
helps students learn from their mistakes right away, improving retention and understanding.
Immediate feedback has been shown to enhance learning efficiency, as it prevents the
reinforcement of incorrect information and allows students to correct errors promptly.
Teacher Empowerment: Adaptive learning doesn’t replace educators; rather, it enhances
their ability to support each student effectively. Teachers receive data insights on individual
and group performance, allowing them to address learning gaps, identify trends, and provide
targeted instruction or enrichment activities.

Numerous technologies and platforms are available to support adaptive learning. These tools
often vary by subject, age group, and educational level but share common features, such as data
tracking, interactive content, and Al-powered adjustment algorithms. Some popular adaptive learning
platforms include:

1.

ALEKS (Assessment and Learning in Knowledge Spaces): This platform is widely used in
mathematics and science education. ALEKS assesses students’ current knowledge, identifies
gaps, and provides personalized learning paths to address those gaps.

Knewton: Knewton’s adaptive technology is integrated into various educational products,
offering personalized content recommendations and insights based on student performance.
Knewton’s platform supports a wide range of subjects and is used by educational institutions
worldwide.
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3. Smart Sparrow: This platform focuses on adaptive e-learning in higher education. It allows
instructors to create interactive and adaptive courseware, providing students with a
customized experience based on their unique needs and progress.

4. DreamBox Learning: Designed primarily for K-8 mathematics education, DreamBox
combines adaptive learning with gamification to create an engaging learning experience. The
system adjusts lessons in real-time to keep students challenged and motivated.

While adaptive learning has great potential, successful implementation requires thoughtful planning
and consideration:

1. Teacher Training: Teachers need to be familiar with adaptive learning tools to make the best
use of the data they provide. Proper training helps educators understand how to interpret
analytics, use insights for instruction, and monitor student progress.

2. Blending Adaptive Learning with Traditional Methods: Adaptive learning works best
when combined with traditional instructional methods. While adaptive platforms can provide
individualized practice, teachers still play an essential role in leading discussions, clarifying
complex concepts, and offering emotional and motivational support.

3. Ensuring Access to Technology: For adaptive learning to be effective, students must have
reliable access to technology, whether through school-provided devices or at-home access.
Ensuring digital equity is essential to prevent further disparities in learning opportunities.

4. Continuous Evaluation and Improvement: Institutions should regularly evaluate the
effectiveness of adaptive learning systems and make adjustments as needed. This may involve
collecting feedback from students and teachers, reviewing data on learning outcomes, and
updating content to align with curriculum standards.

Despite its benefits, adaptive learning also presents several challenges:

1. Privacy and Data Security: Adaptive learning platforms collect significant amounts of data
on student performance. Schools and institutions must ensure compliance with privacy
regulations and implement strong security measures to protect sensitive student information.

2. Risk of Over-Reliance on Technology: While adaptive systems are powerful tools, there is
a risk of over-relying on technology. Educators must strike a balance between digital
instruction and traditional teaching methods to provide a holistic learning experience.

3. Alignment with Learning Standards: Adaptive content must align with national and
regional educational standards. Institutions must ensure that adaptive platforms cover
essential learning objectives and offer a curriculum-aligned experience.

4. Addressing Different Learning Preferences: While adaptive systems adjust content based
on performance, they may not always account for different learning styles or preferences.
Integrating features that support visual, auditory, and kinesthetic learners can help make these
systems more inclusive.

As technology continues to advance, the potential of adaptive learning will expand further:

1. Al-Powered Improvements: Advances in Al and machine learning will enable even more
accurate and personalized learning experiences. Future systems may incorporate more
sophisticated algorithms that predict learning paths and provide tailored interventions with
increasing accuracy.

2. Integration with Virtual Reality (VR) and Augmented Reality (AR): Integrating VR and
AR into adaptive learning environments can provide immersive experiences that enhance
engagement, particularly in subjects that benefit from visualization, such as biology, history,
and engineering.

3. Cross-Disciplinary Applications: Adaptive learning may expand to cross-disciplinary
applications, helping students connect concepts across different subjects. For example, an
adaptive system might help a student struggling with reading comprehension in science by
connecting it to their strengths in a different subject, such as language arts.

4. Greater Accessibility and Inclusivity: Adaptive learning has the potential to become more
inclusive, with features designed to support students with disabilities or learning differences.
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Enhanced customization options could help address specific needs, providing an equitable
learning experience for all.

4. CONCLUSION

Integrating adaptive and personalized learning represents a significant advancement in
educational practice, enabling a tailored approach that can adapt to the unique needs and progress of
each student. Together, these methods foster a supportive, efficient, and engaging learning
environment that nurtures student potential and prepares them for future academic and career success.
As technology continues to evolve, the possibilities for combining adaptive and personalized learning
will only expand, paving the way for an increasingly inclusive and effective educational landscape.
Innovative approaches to learning are reshaping education by placing students at the center of the
learning process. Each method, from active and experiential learning to gamification and inquiry-
based strategies, offers unique benefits that can be adapted to different learning environments and
goals. By combining these approaches, educators can create a rich, diverse learning experience that
prepares students not just for exams, but for a lifetime of learning and personal growth. In the future,
these methods are likely to become even more integral to education, helping students develop the
skills they need to thrive in an increasingly complex world. Adaptive learning is revolutionizing
education by personalizing the learning journey for each student. This approach empowers learners
to progress at their own pace, providing just-in-time support and feedback that fosters understanding
and confidence.
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PERSONALIZED EDUCATIONAL PROGRAMS WITH Al

Abstract: Personalized educational programs are designed to meet the unique learning needs, goals,
preferences, and pace of each student. Unlike traditional "one-size-fits-all" methods, these programs use individualized
instruction strategies, adaptive technologies, and often data analytics to cater to the distinct requirements of every
learner. As technology and educational research continue to evolve, the future of personalized learning looks promising.
Advances in Al, machine learning, and data analytics will enable even greater customization, creating highly responsive

programs that can address each student's unique learning profile.
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1. INTRODUCTION

Personalized educational programs are designed to meet the unique learning needs, goals,
preferences, and pace of each student. Unlike traditional "one-size-fits-all" methods, these programs
use individualized instruction strategies, adaptive technologies, and often data analytics to cater to
the distinct requirements of every learner. The ultimate goal is to help students achieve their potential
by making education more relevant, engaging, and effective. Personalized educational programs have
the potential to transform learning for individuals across the lifespan, offering a pathway to a more
inclusive, engaging, and effective educational system. As the field of education continues to embrace
personalization, it promises a future where every learner’s potential can be unlocked and nurtured.
The rise of personalized educational programs signals a profound shift in how we understand and
approach learning. Traditional education systems, which largely focus on uniform curricula and
standardized assessments, often struggle to meet the diverse needs of individual learners.
Personalized education aims to address this by creating tailored pathways that consider each student’s
unique abilities, interests, pace, and goals. This shift has the potential to close educational gaps,
particularly for underserved or struggling students, by offering a level of attention and adaptation
previously unimaginable in conventional settings. Key to the success of personalized education are
the technological advancements that drive it. Through adaptive learning systems, students receive
real-time feedback and customized content that helps them engage deeply with material, learn more
efficiently, and achieve mastery at their own pace. The incorporation of data analytics and Al allows
for continuous adjustments, predicting learning challenges before they escalate and enabling targeted
interventions. Virtual and augmented reality add immersive experiences, bringing subjects to life and
making complex concepts easier to grasp, while gamification and interactive simulations transform
the learning process into an engaging journey. One of the most profound impacts of personalized
education is its focus on fostering lifelong learners. By nurturing critical skills such as self-directed
learning, problem-solving, and resilience, these programs prepare students not just academically, but
for real-world success. Learners who experience personalized education often gain greater self-
awareness and independence, learning to set and achieve personal goals. This adaptability is essential
in a world where industries are constantly evolving, and where the ability to learn and relearn is
invaluable.

2. COMPONENTS OF PERSONALIZED EDUCATIONAL PROGRAMS BY Al

Key Principles of Personalized Educational Programs :

1. Learner-Centered Approach: Personalized programs place the student at the center of the
learning experience. Each learner's interests, abilities, and career aspirations shape their
educational path, making learning more relevant and motivating.
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Flexible Curriculum: These programs are often flexible, allowing students to explore subjects
of interest or engage in different levels of difficulty based on their progress and preferences.
The curriculum may be modular or competency-based, giving students the freedom to work
on topics at a pace that suits them.

Adaptive and Differentiated Instruction: Teachers and educational platforms provide
differentiated instruction based on individual student needs. Adaptive technology plays a
significant role here, offering content adjustments and real-time responses to students'
strengths and weaknesses.

Goal-Oriented Learning: Personalized educational programs are structured around specific,
measurable learning goals. Students are often actively involved in setting these goals, which
helps foster accountability, self-direction, and motivation.

Continuous Feedback and Assessment: Ongoing assessments are used to track students'
progress and adjust learning paths accordingly. Frequent feedback allows students to
understand their progress, identify areas for improvement, and stay motivated throughout their
educational journey.

Student Autonomy: Personalized programs encourage students to take ownership of their
learning. Students may have the option to choose how they learn (e.g., through hands-on
projects, digital resources, or collaborative assignments), which fosters independence and
critical thinking.

Creating an effective personalized program requires a multi-faceted approach. The following
components are essential to building a program that truly adapts to each learner's needs:

1.

Individual Learning Plans (ILPs): Each student has a unique learning plan that outlines their
goals, strengths, areas for improvement, and preferred learning methods. ILPs are typically
developed with input from both students and educators, ensuring alignment with curriculum
standards while allowing for personal choice.

Competency-Based Learning: In competency-based models, students progress based on
mastery of a subject rather than time spent in the classroom. This allows students to move
through content at their own pace and ensures a deeper understanding before advancing to
more complex topics.

Customized Content and Resources: Personalized programs provide various types of learning
materials tailored to different learning styles and preferences. For example, students who
excel in visual learning might receive video-based content, while those who learn better
through reading may be offered more text-heavy materials.

Blended Learning: Blended learning combines traditional face-to-face instruction with online
resources, enabling personalized pacing and access to a broader range of materials. Students
can review content independently online, while in-person sessions focus on deepening
understanding and addressing specific questions.

Project-Based Learning (PBL): PBL is often integrated into personalized programs to give
students the opportunity to explore real-world problems and apply their knowledge in
meaningful ways. These projects are usually self-paced and provide flexibility in how students
approach their learning.

Data-Driven Insights: Personalized programs rely on data to monitor student progress and
engagement. Data collected from quizzes, assignments, and interaction patterns helps
educators and adaptive learning platforms adjust the program, ensuring that each student
remains on a path suited to their learning level.

Teacher Support and Mentorship: Teachers play a vital role in guiding and mentoring
students. In personalized programs, teachers often serve more as facilitators, offering targeted
support, encouragement, and resources rather than dictating every step of the learning process.

Benefits of Personalized Educational Programs
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1. Improved Engagement: Students are more likely to stay engaged when learning aligns with
their interests, strengths, and preferred learning styles. Personalized educational programs
make learning more relevant, helping students find purpose and joy in their studies.

2. Greater Academic Achievement: By focusing on individual needs and learning styles,
personalized programs enable deeper understanding and retention of knowledge. Studies have
shown that students in personalized settings often achieve better academic outcomes
compared to those in traditional models.

3. Increased Motivation and Confidence: Setting personal goals and achieving them can boost
students' confidence and motivation. When students see that their unique needs are being met,
they feel more supported and are more likely to take initiative in their learning journey.

4. Enhanced Skills for Future Success: Personalized programs encourage self-directed learning,
problem-solving, and time management—skills that are valuable in higher education and the
workforce. Students also develop resilience and adaptability as they work through challenges
at their own pace.

5. Reduced Learning Gaps: Personalized learning enables educators to address learning gaps as
soon as they appear. Rather than advancing all students at the same rate, educators can ensure
that each student has a solid foundation before moving on to more complex material.

6. Opportunities for Exploration: Personalized programs often provide students with the
flexibility to explore topics of personal interest. This freedom promotes curiosity and allows
students to develop specialized knowledge in areas they are passionate about.

Personalized educational programs have been implemented across various educational
institutions and levels. These programs can vary widely depending on available resources,
technological infrastructure, and pedagogical goals:

1. Primary and Secondary Schools: In settings, personalized learning is often implemented
through adaptive software, blended learning models, and differentiated instruction strategies.
Teachers may use platforms that track students' progress and provide recommendations for
personalized content.

2. Higher Education: Many universities are incorporating personalized programs to
accommodate diverse student populations. Competency-based courses, self-paced online
modules, and individualized mentorship allow students to tailor their learning experiences to
their academic and career goals.

3. Special Education: Personalized educational programs have significant benefits for students
with special needs. Individualized support and customized resources help ensure these
students receive the attention they need to succeed in the mainstream classroom.

4. Corporate Training and Professional Development: In the corporate world, personalized
learning programs help employees develop specific skills needed for their roles. These
programs often incorporate microlearning modules, interactive simulations, and on-the-job
training to provide relevant and customized learning experiences.

While the benefits of personalized education are substantial, there are also challenges and
considerations that institutions must address for successful implementation:

1. Resource and Technology Requirements: Developing a personalized program requires access
to adaptive technology, digital content, and data analytics tools. Schools and institutions with
limited funding may struggle to implement such programs effectively.

2. Teacher Training and Support: Educators must be adequately trained to use personalized
learning tools and interpret data insights. Teachers may also need to adapt to new roles as
facilitators, providing guidance and support rather than delivering traditional lectures.

3. Equity and Access: Personalized education requires equitable access to technology and
resources. Institutions must ensure that all students, regardless of socio-economic
background, have the tools they need to engage with personalized learning.

4. Privacy and Data Security: Data collection is essential for personalized learning, but it also
raises privacy concerns. Schools and educational platforms must adhere to strict data privacy
standards to protect students’ information.
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5.

Balancing Personalization with Standardization: While personalization is important, it must
be balanced with standardized curricula and assessments to meet educational benchmarks and
ensure fairness across the student population.

Motivation and Self-Discipline: Personalized programs require students to take more
responsibility for their learning. However, not all students may have the intrinsic motivation
or self-discipline to thrive in a personalized environment, especially if they are accustomed to
traditional structures.

As technology and educational research continue to evolve, the future of personalized learning
looks promising. Advances in Al, machine learning, and data analytics will enable even greater
customization, creating highly responsive programs that can address each student's unique learning
profile. Key trends for the future include:

1.

Al-Driven Personalization: Al-powered systems can analyze vast amounts of data on student
performance and behavior to offer even more nuanced personalization. These systems can
anticipate learning gaps before they become problems, provide tailored interventions, and
help students achieve mastery more effectively.

Integration with Augmented and Virtual Reality: AR and VR offer immersive, interactive
learning experiences that can be tailored to individual needs. Personalized programs may
include virtual field trips, interactive science experiments, or historical reenactments, making
education more engaging and accessible.

Holistic Student Profiles: Future personalized programs may create comprehensive profiles
that include not only academic data but also social-emotional insights, learning preferences,
and career aspirations. This holistic approach can support the development of well-rounded
individuals equipped for future success.

Cross-Disciplinary Personalization: Personalized educational programs will likely become
more interdisciplinary, allowing students to apply concepts across subjects and build
connections between fields. For example, a student interested in environmental science could
explore personalized modules in biology, chemistry, and public policy.

Increased Collaboration and Peer Learning: While personalized programs focus on individual
learning, they can also incorporate collaborative elements. Students may work on group
projects with peers who have complementary strengths, fostering teamwork and
communication skills.

3. METHODOLOGIES THAT DRIVE PERSONALIZED EDUCATION FORWARD BY Al
Mechanisms of Personalized Education :

1.

Advanced Data Analytics: One of the cornerstones of personalized education is the use of data
analytics to create real-time insights. Every action a student takes on an educational
platform—from answering questions to watching videos—is recorded and analyzed. Machine
learning algorithms then identify patterns and tailor recommendations to each student. This
allows for immediate adjustments in difficulty, pacing, and content type, creating a truly
customized experience.

Student Profiling and Learning Styles: Personalized educational programs often consider each
student’s learning style. While some students learn best through visual means, others may
thrive with hands-on projects or auditory lessons. Advanced personalization systems create
unique learning profiles, taking into account learning styles, cognitive abilities, motivation
levels, and interests. This profile is then used to offer learning materials that align with each
student's preferred style, boosting both comprehension and retention.

Behavioral and Predictive Modeling: Modern platforms track student engagement levels,
attention spans, and even frustration points, making predictive modeling a powerful tool. If a
student consistently struggles with a certain type of problem or loses engagement after specific
intervals, the program can proactively introduce breaks, change teaching tactics, or provide
motivational prompts to keep them engaged. This predictive capacity helps prevent
disengagement and burnout, supporting students to stay on track.

41



4.

Goal-Setting and Reflection Tools: Effective personalized programs encourage students to set
personal goals and reflect on their progress. These platforms often include goal-setting
features that allow students to break down long-term objectives into manageable steps,
fostering a growth mindset and resilience. Reflection tools, such as digital journals or progress
dashboards, let students see how far they’ve come and adjust goals as they achieve new
milestones.

Methodologies that Drive Personalized Education Forward :

1.

Flipped Classroom Model: This approach reverses the traditional teaching structure, where
students learn new material at home and apply it in the classroom. For personalized education,
the flipped classroom can offer great benefits. At home, students engage with resources
tailored to their individual needs, such as video lessons, readings, or quizzes. In the classroom,
they then work on assignments, projects, and discussions that help deepen their understanding
with guidance from the teacher.

Project-Based Learning (PBL): In personalized educational programs, PBL enables students
to work on real-world problems that align with their interests. This methodology gives
students more control over their learning and allows for interdisciplinary exploration. For
instance, a project focused on renewable energy could cover science, math, and social studies,
making the learning experience more relevant and memorable.

Gamification and Interactive Learning: Gamified elements are increasingly popular in
personalized education. These include achievement badges, points, levels, and rewards that
make learning feel like a game. Interactive simulations and scenarios also allow students to
apply their knowledge in dynamic ways, reinforcing learning through practice.

Self-Paced Learning: Personalized programs often use self-paced modules that allow students
to progress through the curriculum as they achieve mastery. This differs from traditional
programs that move at a uniform pace. Self-paced learning is especially beneficial for students
with busy schedules or unique learning needs, enabling them to catch up or accelerate as
needed.

Advancements in Technology Supporting Personalized Education :

1.

Artificial Intelligence and Machine Learning: Al and machine learning are at the heart of
modern personalized learning systems. Al helps identify individual student needs, adapt
content in real time, and offer predictive insights that empower teachers to make data-driven
decisions. Machine learning algorithms, for example, can detect when a student might
struggle with a topic and provide supplemental resources or recommend intervention
strategies.

Natural Language Processing (NLP): NLP enables more intuitive interactions between
students and digital platforms. For instance, a student struggling with a math problem could
type a question into a virtual assistant powered by NLP, which can then offer explanations,
resources, or even step-by-step solutions. This technology also aids in language learning,
where real-time feedback on grammar, pronunciation, and vocabulary is essential.

Virtual Reality (VR) and Augmented Reality (AR): VR and AR make immersive, interactive
learning experiences possible. In personalized programs, students can take virtual field trips,
conduct simulated science experiments, or explore historical sites. This type of learning caters
especially well to visual and experiential learners, enhancing engagement and comprehension.
Blockchain for Credentialing and Transparency: Blockchain technology offers secure
credentialing and record-keeping, which can help students and institutions maintain accurate,
transparent learning records. Blockchain could enable students to carry a portable learning
record from one institution or job to another, documenting their specific skills and
competencies without relying on traditional transcripts.

Real-World Applications and Examples of Personalized Education :

1.

K-12 Education: Many K-12 schools are piloting personalized programs through partnerships
with edtech providers. Programs like i-Ready, DreamBox, and Khan Academy offer
customized math and reading pathways for elementary and secondary students. Teachers can
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then use the data from these platforms to create targeted interventions for students who are
struggling or provide enrichment for those ready for advanced material.

Higher Education: Universities are implementing competency-based programs where
students can progress at their own pace, a model that works well for adult learners or students
with varied backgrounds. For example, Western Governors University (WGU) uses a
competency-based model that allows students to advance upon mastering the material, not
just completing course hours. This method aligns well with personalized education principles
and helps working professionals earn degrees on flexible schedules.

Corporate Training: Personalized learning is valuable in corporate training, where companies
like LinkedIn Learning and Coursera for Business offer individualized learning paths to
employees. Employees can engage in self-paced courses tailored to their roles, industries, and
career aspirations. Companies benefit from employees who are better equipped for specific
tasks and professional growth.

Special Education Programs: Personalized learning has had a significant impact on special
education by offering tailored resources and individualized support. Tools like Learning Ally,
which provides audiobooks for students with dyslexia, or platforms that use text-to-speech,
have made education more accessible for students with disabilities. Personalization allows
these students to learn at their own pace and receive materials in formats that suit their learning
needs.

Benefits and Potential Outcomes :

1.

Enhanced Learning Outcomes: Studies show that personalized learning can lead to higher
academic performance, greater retention, and improved skill mastery. When learning is
tailored to their individual needs, students are more likely to grasp complex concepts and
retain information over time.

Development of Critical Life Skills: Personalized educational programs encourage self-
management, time management, and problem-solving skills. These abilities not only help
students succeed academically but also prepare them for success in the workforce, where
adaptability and independence are highly valued.

Greater Inclusivity: Personalized education models are especially beneficial for diverse
student populations. They provide access to tailored resources for students from varied
backgrounds, ensuring that each learner has the opportunity to succeed.

Support for Continuous Learning: Personalized programs can support lifelong learning by
providing learners with tools to continue their education beyond formal schooling. This is
particularly valuable in today’s fast-evolving job market, where continuous skill development
is essential.

Overcoming Challenges in Implementation :

1.

Equipping Educators: Teachers and instructors need thorough training to maximize the
benefits of personalized education tools. This training should cover data interpretation, use of
adaptive technology, and ways to balance individual attention with class-wide objectives.
Ethics and Data Privacy: Personalized education relies heavily on student data, raising ethical
concerns around privacy. Educational institutions and companies must comply with data
privacy laws like GDPR and FERPA, ensuring transparent data collection and secure storage.
Balancing Customization with Core Standards: While personalization is key, educators must
still ensure that students meet core learning standards and benchmarks. Customized programs
should be designed to maintain rigor while accommodating diverse learning needs.

Resource Allocation and Infrastructure: Implementing personalized programs requires a
substantial investment in technology, infrastructure, and support staff. Schools and
institutions, particularly in underfunded areas, may struggle to provide equitable access to
these resources.

The future of personalized education will likely include:
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o Global Access and Scalability: Advances in cloud technology and mobile learning platforms
could bring personalized education to a global audience, including remote or underserved
communities.

o Greater Integration of Al: Future developments in Al may enable even more precise
personalization, with systems capable of understanding students' emotional states, learning
fatigue, and levels of engagement.

o Expanding Learning Ecosystems: Personalized learning could expand beyond classrooms into
lifelong ecosystems where learning is woven into all aspects of life, from workplaces to
community spaces.

o Collaborative Personalization: Future personalized programs might incorporate collaborative
elements where students work in groups on customized projects, building interpersonal and
collaborative skills in addition to individual mastery.

4. CONCLUSION

Personalized educational programs are reshaping the future of education by prioritizing
individual learning needs and empowering students to take control of their education. These programs
offer numerous benefits, from improved academic outcomes and student motivation to the
development of crucial life skills. By addressing each learner’s unique profile, personalized programs
make learning more meaningful, equitable, and effective. As technology advances and educators
refine their approaches, personalized learning will continue to expand, creating transformative
opportunities for students worldwide. In conclusion, personalized educational programs are reshaping
the future of learning by putting the individual at the center of the educational journey. Through
innovative technologies like Al, machine learning, and data analytics, these programs are adapting to
diverse needs, abilities, and learning preferences, creating more inclusive and effective educational
environments. They encourage self-paced learning, critical thinking, and self-management skills, all
of which are essential in today’s fast-paced and ever-evolving world. While challenges such as ethical
concerns, resource disparities, and the need for educator training remain, the benefits of personalized
education are clear. When implemented thoughtfully, these programs not only enhance academic
outcomes but also equip students with skills crucial for success beyond the classroom. As the field
continues to advance, personalized education holds the promise of a future where every learner,
regardless of background or ability, has the opportunity to thrive in a truly customized and supportive
learning environment. This evolution signifies a shift from a one-size-fits-all model to one that values
and fosters individual growth, opening doors for a more equitable and empowered society. Beyond
academic settings, personalized learning has found valuable applications in corporate and
professional development, allowing individuals to stay competitive in the job market by continuously
upgrading their skills. In fields like healthcare, engineering, and finance, where ongoing education is
crucial, personalized learning pathways enable professionals to acquire specific knowledge and skills
relevant to their roles, which in turn supports organizational growth and innovation. Despite its
promise, personalized education faces challenges, including concerns over data privacy, the need for
equitable access to technology, and the preparation of educators to effectively leverage personalized
tools. Addressing these issues requires a multi-faceted approach, from policy reforms to investments
in infrastructure and teacher training. Schools and organizations must ensure that personalization
efforts protect student data, maintain rigorous standards, and provide universal access to high-quality
resources.

Looking to the future, the evolution of personalized education will likely be shaped by further
technological advancements and a growing emphasis on learner-centered approaches. As educators,
institutions, and governments recognize the long-term benefits of personalization, there will be
greater investment in creating scalable, secure, and inclusive solutions that make this approach
accessible to learners everywhere. In time, the principles of personalized education—flexibility,
inclusivity, and student empowerment—may redefine education across all levels, creating a more
adaptive, resilient, and knowledgeable society. Ultimately, personalized education is more than a
trend; it’s a transformative approach that aligns education with the complexities and opportunities of
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the modern world. By embracing this shift, we can foster a generation of learners who are not only
academically proficient but also equipped with the skills, confidence, and mindset needed to thrive
in an ever-changing global landscape.
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NEURAL NETWORK BASIS OF INNOVATION.

Abstract: The article is devoted to the analysis of the role of neural network technologies in the implementation
of innovations across various sectors of the economy and society. The potential of neural networks for process
automation, big data analysis, and trend forecasting is explored. The practical application of neural networks in industry,
education, science, and economics is highlighted, including forecasting technical failures, optimizing production
processes, personalizing education, and fostering innovative economies. Special attention is given to the prospects of
neural network integration within the frameworks of Industry 4.0 and Industry 5.0 concepts, focusing on human-centered
approaches and sustainable development. The article also emphasizes the need to establish integrated research,
educational, and industrial centers, intersectoral platforms, and innovative educational programs to create synergy
between education, science, and economics. Proposed models of neural network use aim to adapt the economy to limited
resource conditions and develop financial mechanisms to support innovation.
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1. Introduction

Neural network technologies are among the most promising tools for implementing
innovations across various economic sectors in today's world. Their potential is immense, as they can
radically transform approaches to solving strategic tasks, providing a new level of efficiency,
precision, and adaptability. These technologies are now becoming the foundation for automation, data
analysis, and trend forecasting, which is crucial for many economic sectors, especially amid rapid
transformation.

One of the key areas of neural network application is predicting technical failures in complex
equipment. For example, in metallurgical complexes, heavy machinery plants, or high-precision
equipment, failures can cause significant losses. Neural networks enable effective real-time
monitoring of equipment parameters. Convolutional neural networks analyze sensor data, such as
vibrations, temperature, or pressure, identifying even the slightest deviations. Recurrent neural
networks, particularly LSTMs, recognize patterns that may precede failures, allowing for
maintenance planning to minimize risks and costs. In industries such as aviation, these systems can
detect potential engine problems before they occur, ensuring uninterrupted operations and substantial
resource savings.

Another critical aspect is the automation of production lines. In complex multi-stage
processes, such as electronics or automotive manufacturing, neural networks allow for real-time
optimization of technological parameters, adapting them to changing conditions. They not only
maintain a consistent level of product quality but also learn during operation. For instance,
reinforcement learning methods enable production systems to self-adapt to equipment wear or
changes in raw material properties. Additionally, the use of convolutional neural networks for image
analysis facilitates automated quality control by detecting even the smallest defects in products.

The role of neural networks extends beyond production processes. In marketing and supply
chain management, these technologies provide tools for analyzing large datasets from sources such
as online sales or social media. This enables forecasting consumer behavior, optimizing inventory,
and even creating personalized offers. For example, transformers like GPT and BERT help create
interactive customer experiences, increasing loyalty and boosting sales. For industrial enterprises,
this translates into the ability to quickly adapt production lines to new market demands, which is
particularly important in today's dynamic market environment.

The restoration of Ukraine's industrial, educational, and scientific potential can also be based
on neural networks. In industry, they enable the modernization of outdated equipment, the
implementation of digital twins of technologies, and increased productivity. In education, the
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development of adaptive learning platforms will facilitate the preparation of specialists for high-tech
industries. In science, the integration of big data into research processes will accelerate fundamental
discoveries.

2. Conceptual Foundations of Neural Network Innovations

Thanks to their ability to analyze large volumes of data, uncover hidden patterns, and make
optimal decisions swiftly, neural networks are increasingly becoming indispensable tools in modern
industries. The manufacturing sector, which frequently faces challenges such as equipment failures
or the need to optimize processes, particularly benefits from neural networks. For instance, models
based on recurrent neural networks (LSTM) can predict technical failures, minimizing downtime
risks. Neural networks also enable real-time analysis of sensor data, detecting anomalies and
suggesting corrective actions. This reduces costs and improves equipment reliability, which is
critically important for enterprises focused on high productivity.

The use of robotic systems driven by deep learning algorithms accelerates research and
ensures accurate results. This is particularly relevant for tasks such as discovering new materials,
where machine learning combined with high-precision experimental setups significantly reduces the
time and resources required to achieve scientific breakthroughs.

The educational sector is also actively implementing neural network technologies. Adaptive
learning systems based on transformers, such as GPT and BERT, create personalized programs for
students, taking into account their needs and individual learning styles. This enhances the efficiency
of the learning process and improves outcomes. These systems not only help students master complex
technologies but also prepare them for the realities of Industry 4.0 and 5.0 [1,2]

Moving to the concept of Industry 5.0, it should be noted that it emphasizes a human-centric
approach. In this context, neural networks serve as instruments for harmonizing the interaction
between humans and machines. They provide operators with decision-making support, enable
personalized solutions based on individual needs, and even adapt to new conditions. For example, in
manufacturing, this can manifest in the development of intelligent energy management systems that
reduce costs and ensure environmental sustainability.

Of particular interest is the interplay between science, education, manufacturing, and the
economy. The synergy of these domains forms the foundation of innovative development. The results
of scientific research are integrated into manufacturing processes through the preparation of qualified
personnel, while education programs based on Al help future professionals master the latest
technologies. The creation of educational and research platforms, such as digital simulations or virtual
laboratories, ensures that students and researchers have access to advanced technologies without
significant costs.

3. Application of Neural Networks in the Short-Term Perspective

In the short term, neural networks can significantly transform approaches to construction,
resource extraction, metallurgy, mechanical engineering, education, and economics. Their application
ensures automation, efficiency, and predictability, which are particularly crucial under conditions of
limited resources and high productivity demands.

In construction, neural network technologies provide new opportunities for automating
planning and monitoring processes. They dynamically generate project schedules, considering
numerous factors such as weather conditions, material availability, or human resources. Neural
networks analyze data from drones or surveillance cameras, enabling real-time detection of delays or
defects. Special attention is drawn to digital twins that model the behavior of structures, such as
bridges or buildings, under various loads, ensuring predictive maintenance and emergency scenario
simulations. For instance, a digital twin of a residential complex allows optimization of energy
consumption and enhances the comfort of its residents.

In resource extraction, neural networks facilitate intelligent analysis of geological data,
identifying new deposits of valuable minerals even in hard-to-reach regions. They also assess the
economic feasibility of extraction under resource scarcity. Using predictive models, neural networks
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optimize the operation of drilling rigs, reducing energy consumption, and predict potential equipment
failures to avoid downtime. For example, in gas extraction, neural networks can automatically adjust
drilling parameters based on the rock type, minimizing the risk of accidents.

Metallurgy and mechanical engineering also benefit from the implementation of neural
networks. In metallurgy, they optimize temperature regimes in smelting furnaces, enhancing metal
quality, and reducing heat losses, thereby ensuring efficient energy consumption. In mechanical
engineering, neural networks streamline the automation of design and manufacturing processes. Al-
driven generative design proposes optimal structures for components with minimal weight and high
strength. Furthermore, neural networks enable precise machining of components, reducing the risk of
defects. For instance, in turbine production, neural networks assist in creating optimal blade shapes
and ensuring their manufacturing accuracy.

In education, the potential of neural networks allows for the development of personalized
learning paths tailored to each student’s level of knowledge and needs. Intelligent assessment systems
automatically evaluate assignments, analyze errors, and offer recommendations. Adaptive Al-based
platforms enable rapid training of specialists in the field of neural networks, utilizing virtual
simulators and online courses that adjust to the students' level. This approach is particularly effective
for hands-on learning through practical projects that work with real data.

The economy, under resource-constrained conditions, also gains significantly from neural
network implementation. They optimize resource allocation by identifying the most efficient budget
utilization directions and developing optimal delivery routes considering weather conditions or road
status. By analyzing expenses, neural networks can identify weak points and optimize processes. For
small businesses, this becomes an opportunity to achieve competitiveness even with limited financial
resources.

4. Long-Term Development Prospects

The long-term development prospects of neural network technologies pertain to the
integration between humans and machines, acceleration of scientific research, sustainable production,
innovative education, and the management of complex systems. These directions are already forming
the foundation for Industry 5.0, which emphasizes a human-centered approach and sustainable
development [3-5]. Neural network technologies enable adaptive interfaces capable of intuitively
recognizing operator commands while considering their emotional state or physical limitations. For
instance, robotic systems equipped with deep learning not only perform tasks but also act as partners
for workers, collaboratively solving production challenges. Intelligent exoskeletons provide safety
and comfort, while cognitive interaction between humans and robots facilitates the analysis of
workers’ requests and the provision of immediate solutions.

The scientific domain is also one of the primary beneficiaries of neural network system
advancements. These technologies accelerate the modeling of complex physical and chemical
processes, replacing traditional mathematical models that previously required years of research. For
example, NLP models automate the analysis of scientific publications, highlighting key trends and
discoveries. Such systems not only generate new hypotheses but also optimize experimental
parameters in real-time, driving breakthroughs in science.

Sustainability and ecology also benefit from the implementation of neural networks. They
enable resource optimization by forecasting energy consumption and identifying efficient delivery
routes, minimizing transportation costs and emissions. Neural network-based modeling of closed
production cycles contributes to waste reduction and the reuse of materials. For instance, in the
chemical industry, leftover materials are converted into secondary raw materials, significantly
reducing the environmental impact of production.

Digital twins integrated with neural networks open new opportunities in managing complex
systems. They continuously analyze data from physical systems, predict potential failures, and
develop preventive strategies. Such systems can be used to model intersectoral collaboration, for
example, in projects involving universities, factories, and businesses. Intelligent twins develop long-
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term development strategies by modeling economic, technological, and educational scenarios,
ensuring synergy between these fields.

5. Integration and Implementation

The integration and implementation of neural network technologies require the creation of
effective mechanisms that unify education, science, and industry, while also adapting the economy
to the constraints of limited resources. Establishing integrated research centers that combine
education, scientific research, and industrial needs is a top priority. Such centers should facilitate
workforce retraining, the development of innovative solutions, and the rapid transfer of technologies.
For example, "Neural Network Innovation Centers"” established at universities could offer practical
training programs for students and address real-world industrial challenges. This approach would not
only create an effective learning environment but also integrate education into industrial processes.

Intersectoral platforms play a vital role in fostering collaboration between various sectors of
the economy. These platforms enable the exchange of data and expertise among engineers,
researchers, and entrepreneurs, develop standards for implementing Al in industries and
transportation, and accelerate startup development. Young teams gain access to real production data,
allowing them to test their ideas in conditions as close to practical applications as possible. Such hubs
can integrate into global innovation networks, promoting regional initiatives.

Government support for startups is crucial for innovation development. Flexible grant
programs should include funding for prototyping, access to equipment through technology parks, and
mentorship support. Combining public funding with private investments via incentive programs will
encourage businesses to collaborate with young development teams. This will form the foundation
for creating competitive technological solutions.

Adapting the economy to the conditions of limited resources is a significant challenge that can
be addressed through neural networks. These technologies optimize production cycles, enabling the
prediction of energy consumption and effective inventory management. For instance, in metallurgy,
neural networks help adjust furnace temperature regimes to minimize energy consumption and predict
material needs to ensure their efficient use.

The creation of sustainable financial models to support innovation involves using neural
networks for financial flow modeling, risk analysis, and cost optimization. This will allow for more
effective allocation of resources between research, implementation, and scaling. Flexible approaches
to lending, including government and private programs, will ensure funding access for companies
developing cutting-edge technologies.

6. Conclusions

The innovative development of Ukraine is based on the harmonious interaction of education,
science, and the economy. These three components form the foundation for sustainable growth and
modernization. To ensure this development, it is essential to identify key areas that will enable the
creation of an effective innovation ecosystem.

Education should focus on preparing future professionals. This involves the introduction of
interdisciplinary programs that combine knowledge in neural networks, robotics, data analysis, and
environmental sustainability. Educational institutions must adapt their curricula to meet the demands
of the modern labor market, ensuring the deep integration of technologies into the learning process.

Science should shift its focus to solving applied problems, such as forecasting infrastructure
conditions, developing new materials, or automating industrial processes. This will enable rapid
responses to current challenges and support economic transformation through innovative solutions.

The economy, by integrating new technologies, should become more resilient to global
challenges. The transition to a digital economy, optimization of production processes, and
implementation of automation are key steps that will enhance international competitiveness.

Neural network technologies play a unifying role in this system. In education, they ensure
personalized learning by adapting materials to students' levels. In science, they facilitate the
automation of large-scale data analysis and the creation of simulations to predict the development
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scenarios of complex systems. In the economy, they optimize resource use, forecast market trends,
and support the adaptation of business strategies.

Further Research

Future development requires the creation of innovative models for interaction among
education, science, and industry. Platforms for joint projects must be introduced to provide effective
coordination among students, researchers, and industrial companies. For instance, virtual laboratories
can unite participants to solve applied problems in real time. The use of digital twins for simulating
production processes will also become a powerful tool for learning and research.

Innovative educational programs should integrate Al technologies into curricula, enabling
learners to acquire practical skills in working with neural networks. The development of dual
education programs that combine theory and practice in industrial settings will prepare specialists
capable of promptly addressing applied tasks.

Regional scientific and industrial clusters will facilitate the implementation of joint projects
between universities, research institutes, and enterprises. This will enable the integration of
innovations into industry and the development of a competitive economy.

Comprehensive Approaches to Technology Development

Further technological development requires a systematic approach that considers
interdisciplinarity, flexibility, and scalability. Incorporating methods from various fields such as
mathematics, computer science, biology, and chemistry will enable the creation of new solutions for
pressing challenges. Flexibility in research will ensure rapid adaptation to new challenges through
experimental models. Scalability will allow technologies to transition from local to global
applications.

For example, using neural networks in biotechnology can accelerate the development of new
drugs or materials. Automated forecasting systems will ensure the resilience of industrial systems to
crises, supporting their effective operation even under challenging conditions.

Thus, neural network technologies integrated into education, science, and the economy ensure
Ukraine's sustainable development. They establish a foundation for an innovative ecosystem that
combines intellectual resources, modern technologies, and efficient financial mechanisms. This
approach will enable Ukraine to confidently advance toward global technological leadership.
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AN INTERPRETABLE SYSTEM FOR BREAST CANCER DIAGNOSIS USING XAl
METHODS

Abstract: Breast cancer remains a leading cause of death among women worldwide, requiring early and
accurate detection methods. This study aims to improve the interpretability of breast cancer diagnostic systems by
integrating Explainable Al (XAl) techniques without compromising prediction accuracy. Utilizing the publicly available
InBreast dataset, we employed pretrained EfficientNet and GMIC models finetuned on mammographic images.
Integration of XAl methods provided visual explanations of model decisions, enhancing interpretability crucial for
clinical practice. The finetuned GMIC model, enhanced with improved regions of interest (ROIs) grouping and filtering
methods, achieved an AUC-ROC of 0.857 and a Dice Coefficient of 95.3%, demonstrating high classification and
localization accuracy.

Keywords: Breast Cancer Diagnosis, Interpretability, Explainable Al, Computer Vision, Deep Learning,
Convolutional Neural Networks.

Breast cancer is one of the leading causes of death among women in the USA. Globally, in
2022 alone, 2.3 million patients were diagnosed with breast cancer, with more than 670,000 resulting
deaths [1].

One of the primary methods for diagnosing breast cancer is screening mammography.
Mammography is a type of X-ray imaging technique that allows radiologists to visualize internal
breast structures. Radiologists analyze screening mammograms for tissue abnormalities that may
indicate breast cancer. However, according to research [2], the average radiologist achieves a
specificity of only 85.2% with a sensitivity of 62.1% in recognizing malignant cases. This
performance requires further confirmation of mammography diagnosis through additional methods,
such as ultrasound or tomosynthesis. In some cases (10-20% of women with suspicious
mammograms), patients are referred for invasive procedures such as ultrasound-guided biopsies, but
only 20-40% of these biopsies confirm malignancy [3].

Early and accurate diagnosis is key to improving the quality of life and survival rates of
patients. This brings the need for automated, precise, and interpretable diagnostic tools. Despite
significant advances in medical technology, Al-based diagnostic methods have not been widely
adopted in clinical practice. One of the primary reasons for this low adoption rate is the lack of
transparency in Al-based models. In the healthcare domain, interpretability is especially crucial —
diagnostic decisions must be explainable to both patients and professionals to build trust and ensure
appropriate medical intervention.

The development of automated, accurate, and interpretable diagnostic tools could lead to
greater adoption and integration into clinical workflows, ultimately improving diagnostic reliability
and patient outcomes.

Breast cancer diagnosis using mammographic images has a significant focus from computer
vision researchers. Automated diagnostic systems are vital for early detection, which improves the
chances of successful treatment [4]. Existing systems often struggle with poor interpretability of
results.

Many studies have aimed to improve classification accuracy using various deep learning
techniques and architectures. For example, [5] proposed a system that classifies mammographic
images into benign and malignant categories using a YOLO-based model. The researchers utilized
the CBIS-DDSM dataset and a private dataset of spot magnification mammograms for training and
evaluation. Preprocessing steps were applied to enhance the contrast between calcifications and other
tissues, improving the model's ability to detect subtle anomalies.
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Similarly, [6] explored classifiers based on pre-trained deep convolutional neural networks
such as AlexNet, GoogleNet, and ResNet. They investigated various approaches, including using
DCNNSs as feature extractors for support vector machine classifiers and the impact of applying
principal component analysis to the extracted features. Their method involved cropping regions of
interest from images and applying histogram equalization (CLAHE) to improve image quality. The
study demonstrated that combining deep learning with traditional machine learning techniques could
enhance classification performance on datasets like CBIS-DDSM and MIAS.

In another approach, [7] EfficientNet models were used for classification based on the BI-
RADS system with eight categories instead of the common binary classification approach. This
method aimed to provide a more detailed assessment aligned with clinical practices, using a private
dataset for training and evaluation. However, the use of a private dataset limits the reproducibility
and comparison with other studies.

Addressing the issue of interpretability, [2, 8] developed an interpretable classifier for high-
resolution breast cancer screening images utilizing weakly supervised localization. The system
employed multiple convolutional neural networks, starting with a model to identify suspicious
regions, followed by patch classification using models like ResNet-34 or ResNet-50. They formulated
the task as a multi-label classification problem for the presence of benign and malignant lesions,
allowing for the generation of separate saliency maps for visualization. These saliency maps highlight
regions of interest, helping clinicians understand the model's decision-making process.

Several limitations of the clinical applicability of existing studies were determined:

e Use of Private Datasets. Many of studies utilized private datasets, making it
challenging to reproduce results or compare the proposed methods. The lack of
publicly available data makes the validation of these models nearly impossible
stopping their wider adoption.

¢ Insufficient Models Interpretability. While some models achieve high accuracy,
they often do not provide clear explanations of their decisions. This lack of
transparency makes it difficult for clinicians to trust and effectively use these
systems.

e Insufficient Validation of Interpretability. Most studies focus primarily on
classification accuracy, ignoring the need for explainability or without the
guantitative assessment of interpretability.

These unresolved issues highlight the need for diagnostic models that balance high accuracy
with transparency.

Many existing Al models for breast cancer diagnosis function as «black boxes», offering
accurate results but little or no insight into how they reach their conclusions. There is limited
integration of Explainable Al (XAI) techniques into breast cancer detection models, suggesting
opportunities to improve interpretability. Balancing model accuracy with explainability remains a
significant challenge. Finding an optimal balance where the model remains accurate while providing
understandable explanations is crucial.

The aim of the work is to improve the interpretability of automated breast cancer diagnostic
systems by integrating Explainable Al (XAI) techniques without compromising the accuracy of
predictions.

To achieve this aim, we will analyze existing approaches and datasets, implement
preprocessing methods, develop a system to evaluate interpretability, create an interpretable model,
optimize hyperparameters, and validate the proposed approach.

As the main dataset for further research, we selected the public InBreast dataset due to its
high-resolution digital mammographic images with detailed annotations. The dataset contains 410
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images from 115 cases, including various types of lesions such as masses, calcifications, asymmetries,
and architectural distortions. Precise contours of anomalies are provided, manually annotated by
radiologists in XML format. The availability and quality of InBreast make it suitable for developing
and validating our interpretable diagnostic system.

We utilized convolutional neural networks (CNNs) for the classification of mammographic
images. CNNs are effective for image analysis tasks because they can automatically learn hierarchical
feature representations. Specifically, we employed pre-trained EfficientNet models [11], known for
their balance of accuracy and computational efficiency.

We assessed model performance in terms of both classification and localization quality.

Classification Metrics used for each class:

Precision measures the proportion of correct positive predictions:
Uo
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Recall measures the proportion of actual positives correctly identified:
Uo
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where [ is the number of correct predictions of class [], [11] is instances incorrectly predicted
as class [1, and (][, is the number of instances of class [J incorrectly predicted as another class.

We then computed the macro-average over all classes to obtain overall Precision and Recall:
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Area Under ROC Curve (AUC-ROC) evaluates the model's ability to distinguish between

classes across all threshold settings. For per-class AUC-ROC, we used the one-vs-rest method. To
aggregate AUC-ROC, we computed:
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where [0 0000000000 1S the area under the ROC curve for Benign vs. Rest, and
O00000,000000000 1S ROC AUC of Malignant vs. Rest.
Used Localization Metrics:
Dice Coefficient measures the overlap between the predicted regions and ground truth in
terms of pixels:
2. [0

2. O00+00+
00

Precision and Recall for Localization show how many Regions of Interest (ROIs) are
precisely detected (Precision) and the proportion of actual ROIs correctly identified (Recall) ignoring
their areas. A predicted ROI is considered correct if it intersects with annotated anomalies.

oo =

We finetuned EfficientNet-B4 and EfficientNet-B5 models on the InBreast dataset. We
experimented with full and partial parameter tuning (training only the final layers while keeping
earlier layers frozen). To address class imbalance we applied a weighted sampler, augmenting
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underrepresented classes in training set.
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Table 1. Results of EfficientNet classifiers.

Experiment Architecture Trained Parameters Balance Train AUC_:—ROC—AGG
No Train Test
18 EffNet B4 All, 17M - 0,996 0,834
19 EffNet B4 Freeze, 14M - 0,999 0,817
21 EffNet B4 All, 17M + 1,000 0,842
22 EffNet B4 Freeze, 14M + 0,955 0,805
25 EffNet B5 Freeze, 22M - 0,965 0,785
26 EffNet B5 Freeze, 22M + 0,946 0,795

The best classification results were achieved with the EfficientNet-B4 model when all layers
were trained and the training set was balanced (Experiment Ne21): AUC-ROC: 0.842, Accuracy:
73.2%, Precision: 70.9% and Recall: 65.1%.

The model demonstrated better performance in recognizing malignant cases compared to
benign ones (Fig. 1). The most common errors were 14 normal images predicted as benign and 13
malignant images predicted as benign.

Val Confusion Matrix

- 70

- 25(62.50%) 13 (32.50%) 2 (5.00%)

MALIGNANT

- 60

3 (3.09%)

82 (84.54%)

True
BENIGN

12 (12.37%) _ 40

0 (0.00%) 14 (51.85%) 13 (48.15%)

NORMAL

-0

BENIGN NORMAL

Predicted

Figure 1. Confusion matrix of EfficientNet B4 classifier trained all params with a balanced
train set.

MALIGNANT

We also compared the achieved results with the GMIC model [8] (Table 2).
Table 2. Results of GMIC classifiers.

Experiment Architecture Trained Balance Train AU(.:—ROC—AGG
Neo Parameters Train Test
31 GMIC No finetuning - - 0,502
32 GMIC Finetune last - 0,872 0,853
linear layer, 1K
33 GMIC Finetune last ¥ 0,815 0,857
linear layer, 1K

The GMIC model, after finetuning the last linear layer with a balanced train subset
(Experiment #33), showed the highest ROC-AUC: 0.857. However, it showed relatively low accuracy
after thresholding: ACC: 48.2%. Adjusting threshold values improved classification metrics.
Optimizing thresholds to 0.3 for the benign class and 0.5 for the malignant class increased overall
accuracy by approximately 17%: ACC: 65.5%, Precision: 58.2%, and Recall: 62.8%. Confusion
matrixes before and after thresholds tuning are shown in Fig. 2.
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Val Confusion Matrix Confusion Matrix - test

3 (7.50%) 6 (15.00%) 4 (10.00%) 5(12.50%)

MALIGNANT
MALIGNANT

15 (15.46%) 25 (25.77%) 57 (58.76%) 15 (15.46%) 60 (61.86%) 22 (22.68%)

True
BENIGN
BENIGN

2 (7.41%) 2(7.41%) 23 (85.19%)

NORMAL

2(7.41%) 12 (44.44%) 13 (48.15%)

NORMAL

' \ |
MALIGNANT BENIGN NORMAL
Predicted

MALIGNANT BENIGN NORMAL
Predicted

A) B)
Figure 2. Confusion matrix of finetuned GMIC classifier trained with balanced train set.
A) Before threshold tuning; B) After threshold tuning.

To enhance the interpretability of the developed classifiers, we integrated Explainable Al
(XAI) methods, focusing on:

e Activation Maps. These methods visualize the activation levels of different regions
by analyzing neuron activations in intermediate network layers, indicating areas of
high importance.

e Class Activation Mapping (CAM). A technique that identifies the impact of different
Image regions on the prediction of a specific class. CAM focuses on areas that most
contribute to classifying an image into a particular category.

e Grad-CAM [12] and Variants. Gradient-weighted Class Activation Mapping (Grad-
CAM) and its extensions Grad-CAM++ and HiResCAM were used to generate
saliency maps highlighting important regions influencing the model's predictions.

For the EfficientNet classifiers, we used Activation Maps, Grad-CAM, and its variants to
generate saliency maps that highlight important regions influencing the model's predictions.

For the GMIC model, we implemented the approach proposed by the authors [8] and
developed our own improved method. In the improved method, we applied additional grouping and
filtering of predicted regions. Regions close to each other were grouped and approximated with
bounding rectangles. Filtering based on confidence scores allowed us to discard insignificant regions.

Explainable Al methods do not always correctly differentiate the severity of anomalies.
Therefore, all localization metrics focused solely on the ability to distinguish anomalies from normal
regions, ignoring severity levels.

Table 3. Localization metrics on the test set.

Training B Explainability Patch D_etection Segmerltation
Experiment Ne Classifier Approach I_\/I_etrlcs, % Metr_lc, %

Precision | Recall Dice
21 EfficientNet B4 | Attention maps 75,0 37,8 8,7
21 EfficientNet B4 GradCAM 75,0 37,8 8,7
21 EfficientNet B4 | GradCAM++ 75,0 37,8 8,7
21 EfficientNet B4 HiResCAM 75,0 37,8 8,7
31 GMIC GMIC 28,7 35,1 92,9
31 GMIC GMIC with 515 | 265 94,9

grouping and

56



filtration
33 Finetuned GMIC GMIC 41,1 46,2 93,2
GMIC with
33 Finetuned GMIC | grouping and 65,5 37,3 95,3
filtration.

The best localization performance was achieved by the fine-tuned GMIC model with grouping
and filtering of anomalous regions (Experiment Ne33). The patch detection reached a Precision of
65.5% and Recall of 37.3%, with a Dice Coefficient of 95.3%. Let's explore localization results on
several examples (Fig. 3):

Original Image

Original Image

(A), (B), (D): Significant differences between the shape of the detected anomaly and
the annotated ground truth due to approximating aggregated predictions with simple
rectangles.

(C): A cluster of calcifications was successfully detected and approximated with
several rectangles, but some distant calcifications were missed.

(E), (F): Instances of falsely predicted regions, highlighting the need for better
filtering mechanisms.

Image ID: 22427751 | View: L-MLO Image ID: 22580419 | Vew L MLO
BI-RADS: 5 | ACR Density: 2 BI-RADS: 2 | ACR Den:

True label: MALIGNANT | Predicted label: MALIGNANT True label: BENIGN | Predicted lal b | MALlGNANT

Predicted Masks True Masks Original Image Predicted Masks True Masks

A) B)

Image ID: 22579870 | View: L-CC Image ID: 22678856 | View: L- MLO
DS: 4c | ACR Den: BI-RADS: 2 | ACR Den:

BI-RA sity: 3 sity:
True label: MALIGNANT | Predicted label: MALIGNANT True label: BENIGN | Predicted lal b I BENIGN

Predicted Masks True Masks Predicted Masks True Masks

C) D)

Figure 3. Examples of detection results.
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Image ID: 51070197 | View: R-CC Image ID: 53587744 | View: L-CC
BI-RADS: 2 | ACR Density: 2 BI-RADS: 1 | ACR Density: 1
True label: BENIGN | Predicted label: MALIGNANT True label: NORMAL | Predicted label: BENIGN

Original Image Predicted Masks True Masks Predicted Masks True Masks

E) F)
Figure 3 (continue). Examples of detection results.

CONCLUSIONS

Our study demonstrates that integrating Explainable Al (XAl) techniques into a convolutional
neural network (CNN) models significantly enhances the interpretability of automated breast cancer
diagnostic systems using mammographic images. By employing the publicly available InBreast
dataset, we developed and fine-tuned models that not only achieve high classification accuracy but
also provide visual explanations of their decisions, addressing a critical need in clinical practice.

The fine-tuned GMIC model, combined with our improved method of grouping and filtering
predicted regions, achieved the best performance in both classification and localization tasks.
Specifically, the model reached an AUC-ROC of 0.857 and a Dice Coefficient of 95.3%. The
localization precision and recall were 65.5% and 37.3%, respectively. These results indicate that the
model is effective in accurately identifying malignant cases and highlighting the regions of interest
that influenced its decisions.

However, challenges remain in fully aligning the detected anomaly shapes with ground truth
annotations. Discrepancies often arise due to approximating complex lesion shapes with simple
geometric figures like rectangles. Additionally, some distant or subtle anomalies may be missed, and
instances of false positives highlight the need for further refinement.

To further enhance the system's clinical applicability, future research should focus on:

Refining Anomaly Shape Approximation: Developing more sophisticated methods to
approximate the shapes of anomalies can improve the overlap between detected regions and ground
truth, leading to better interpretability and trustworthiness.

Optimizing Threshold Values: Fine-tuning the threshold settings for region filtering can help
balance sensitivity and specificity, reducing false positives and negatives.

Enhancing Post-processing Techniques: Implementing advanced image processing methods
may improve the quality of localized regions, capturing subtle anomalies that are currently missed
and eliminating insignificant regions.

Validating with Larger and Diverse Datasets: Testing the models on larger and more diverse
datasets can help generalize the findings and ensure the models perform well across different
populations and imaging conditions.

By addressing these areas, we aim to develop a more robust and interpretable diagnostic tool
that can be confidently integrated into clinical workflows. This advancement has the potential to
improve diagnostic reliability, facilitate early detection of breast cancer, and ultimately enhance
patient outcomes.
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MOJIEJIIOBAHHS MOIIMUPEHHSA IH®OPMAIIIL B COLIAJIBHUX MEPEXKAX 3
AI'EHTAMM

Anomauyin. Y oaniu nybaixayii po3ensioaemucs npobiema Mooent08aHHs. NOWUPeHHsl iHpopmayii' y coyianrbHux
mepedrcax. Byno posenanymo xinvka nioxooie ma memooie 0iist Yb02o, ane OCHOBHA y6azd NPUOLIeHA A2eHMHOMY Ni0X00Y.
byno 3anpononosano poseadamu 6 nodanvuiomy nowuperus iHpopmayii 3 ypaxyeanuam epyn y CcoOyianbHill mepexci,
3anponoHO8aHO MOOeNb, WO 30amHA NPOBOOUMU MAaKe MOOe08AHHS MA 3POOAEHO AHANI3 OMPUMAHUX Pe3VIbMAamis.

Knwuosi cnosa: nowupenus ingopmayii, coyianvHi Mmepedci, MOOen08aHHA, aA2eHMHUL nioxio, epynu,
3anpoONoHO6aHA MOOeNb, AHai3, Memoou

Abstract. This publication addresses the issue of modeling information diffusion in social networks. Several
approaches and methods have been examined, with the primary focus on the agent-based approach. It has been proposed
to consider information diffusion in the context of groups within a social network. A model capable of performing such
modeling was suggested, and the obtained results were analyzed.

Keywords: information dissemination, social networks, modeling, agent-based approach, groups, proposed
model, analysis, methods

ComianbHi Mepexi ChOTOHI BIAIrPatOTh KIIFOYOBY POJIb Y HKUTT1 CYCHUIbCTBA, BUCTYAIOUU
HE JIUIIe TaTGOopMaMu IJIs CIIIIKYBAaHHS, ajie i MOTY)KHUMH 3aco0aMy MOIIUpPEHHs iHpopmalii Ta
B3a€MOJIT MK KOpUCTyBadyaMu. Po3ymMiHHS MeXxaH13MiB MOLIMpeHHs iH(hopMallii B X Mepexax €
KPUTUYHO BXKJIMBHUM ISl 6aratbox cdep, BKIIOYA0Yd MApKETHHT, TOTITHKY, COLIaIbHY THHAMIKY
Ta Oi3Hec-cTparerii. OHaK aKTUBHMIA BIUIMB COLIATbHUX MEPEX MOPOPKYE HU3KY BHUKIHKIB 1
npoOyeM, TaKuX SK MOMMPEHHS (EHKOBUX HOBHH, BIpYCHHH MapKeTHHT, (OpMyBaHHS TPYHOBOI
JYMKU Ta NOBEJIHKOBHMX INAaTepHiB. BUBUEHHS LuX SBUI € CKJIAJHUM 3aBJAHHIM Yepe3 BHCOKY
JUHAMIKY ¥ CKJIaHICTh CHCTEMH, IO BKITIOYA€ BEIHUKY KUTbKICTh KOPUCTYBAiB Ta IX B3a€MO3B’ A3KiB.
Kpim Toro, 3poctaHHst 00CATIB JaHUX 1 PO3BUTOK HOBITHIX T€XHOJIOTiH, TAKUX K IITYYHUIH
IHTEJIEKT, MAalllMHHE HAaBYaHHS Ta aHali3 BEJIUKHUX JaHUX, CTBOPIOIOTH HOBI MOXJIMBOCTI JUIS
BJIOCKOHAJICHHSI MaTeMaTHYHOTO MOJICJIIOBAHHS MpoLECciB momupenHs iHpopmauii. Lle mno3Bosse
NIJBUIIUTA TOYHICTh 1 PEANICTUYHICTh MOJENEH, a TakoXK IVIMOIIE 3pO3YMITH 3B’SI3KM MK
(dakTopaMu, 1110 BIUIMBAIOTH HA MOUIUPEHHS 1HPOpMALlIi.

BincytHicTh  yHIBepcadbHUX MOJENEH, $KI OJHOYACHO BPAXOBYIOTh IHAMBIAYaIbHI
XapaKTEePUCTUKN KOPUCTYBaUiB 1 IN100aNbHI BIACTUBOCTI MEPEXKi, CTBOPIOE HAYKOBUH 1 MPaKTUYHUI
3alMT Ha po3poOKYy HOBUX MMIIXOIB 10 MOJIETIOBaHHS. IcHY€e moTpeda y CTBOPEHHI IHCTPYMEHTIB JUIst
nepeadavyeHHs MpoLeciB NoUMpeHHs iHpopMallii B Mepexax, 00poTbOu 31 cmamoM, (elkoBUMU
HOBMHAMHU Ta HETaTUBHHUMH BIUIMBAMH Ta pO3POOKM HOBHX CTpaTeriii uisi MPakTHYHOTO
BUKOPUCTaHHS B O13HECI, MAPKETHHTY Ta MOJIITUIIL.

[Tommpenns iHdopmalii B colianbHUX MEpexkax € CKIaJHUM OararoakTOpHUM IPOIIECOM,
KU noTpeOye AeTaNbHOTO aHali3y Ta MOJENIOBAHHS JJIsl PO3YMiHHS HOro MEXaHi3MiB 1 AMHAMIKH.
J71st bOTO 3aCTOCOBYIOTHCS Pi3HI MIIXOIN, TaKl IK CTATUCTUYIHI MOJIEN1, ar€HTHI MOJIE, COIIaTbHO-
€KOHOMIUHI MOJIeJNli, MOJIeNi CKJIaJHUX Mepex 1 Mojeni MallMHHOro HaBuaHHs. KokeH i3 mux
MiJXO/A1B Ma€ CBOT MepeBaru i 0OMeKeHHSI.

30KkpeMa, CTaTUCTUYHI MOJIEN1 JO3BOJISIOTh BUSBIISITU 3arajibHi 3aKOHOMIPHOCTI B CTPYKTYpi
Mepexi, aje He BPaxOBYIOTh I1HAMBIAYalIbHUX OCOOIMBOCTEH KOpHUCTYBadiB. ATEHTHI MoOJei
HAJalI0Th MOXKJIUBICTh BIATBOPIOBATH MOBEAIHKY OKPEMHUX KOPUCTYBAYiB 1 aHAI3yBaTH iXH1 CTpaTerii
B33a€MOJIii, MPOTE BOHU YACTO MOTPEOYIOTh 3HAYHUX OOUMCITIOBAIBLHUX pecypciB. CoriaibHo-
€KOHOMIUHI MOJIeJll aKIEHTYIOTh yBary Ha BIUIMBI COLIAJIbHUX 1 €KOHOMIYHHMX (DakTOpiB, OJHAK
MOXYTh OYTH CKJIQIHHUMH JJIs y3arajJbHeHHs. Mojeni CKIaJHUX MEepex J03BOJISIOTh aHali3yBaTu
I100aNbHy CTPYKTYpPY Mepexi, ane iXHiid (OKyc Ha B3a€EMOJISX BY3JIIB HE 3aBXKIU JI03BOJISIE
JOCTIIUTH TIOBEAIHKY OKPEeMHUX KOopHcTyBauiB. Hapemri, Mojeni MaIIMHHOTO HaBYaHHA
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aBTOMAaTH3YIOTh aHaJi3 BEIMKUX HAOOpIB JaHUX, OJHAK MOXKYTh OyTH OOMEXKEHHMH y TOSICHEHHI
MPUYMHHO-HACTIIKOBHUX 3B SI3KiB.

PizHOMaHITTS MiAX0/IB Bi10OpaXkae CKIaJHICTh caMoro siBuia. Harpuknam, cepes areHTHIX
MoJIeJIell OKpeMy yBary NpuBEpTarOTh TaKi, SK MOJIEIb KOHKypeHIii [1], Mosiesib moporoBoro BILIUBY
[2], Moaenb mupoKoro momupeHHs [3], Moaenb BIUTUBY [4] Ta MO/eNb MOMMUPEHHS 1IHHOBAIIH [5].
Koxxna 3 HuX imoctpye cnenudivyHi acnekTH NOUHMpeHHs iHdopMallii, mpoTe sl MOJCIIOBAHHS
peaJbHUX IPOLECIB B YMOBaX CyYaCHHMX COLIAJIbHHUX MEPEXK 4acTO HEJAOCTaTHBO OOMEXYBATUCS
JIVIIE OJTHUM IT1IXOHOM.

BiacyrHicTh yHIBepcadbHOI MOEHi, sika O BpaxoByBaja SK 1HAMBITyaJlbHI OCOOJIMBOCTI
KOPHCTYBA4iB, TaK 1 II100aJIbHI BIACTUBOCTI MEPEXki, CTBOPIOE 3HAUHI BUKJIHMKHU IS JTOCIIKCHHS
nomwupeHHs iHdopMmarii. Ile BuMarae po3poOkM KOMOIHOBAaHUX MIJAXOAIB, SKi O 00’€aHYBaIU
nepeBaru pizHUX Mojenei, 3a0e3neuyoun TOYHICTh aHalli3y, BpaxyBaHHS COLiaJbHO-EKOHOMIYHUX
dakTopiB 1 ePeKTUBHY 0OPOOKY BEIIMKUX OOCSATIB JaHUX.

Y nmocmikeHi [6] po3rasHYTO Ta MpOaHATI30BAaHO HABEICHI BHINE MOJETI Ta MiIXOIH,
3amponoHOBaHO MO IU(iKOBaHM CIIOCIO eper0aueHHs piBHIB MOMUPEHHS 1H(POpMAIIii y comianbHii
MEpEeXKi 3a JOMOMOIOI areHTHOro miaxomy. Ciijg OKpeMo HaroJOCUTH Ha Ba)XJIMBOCTI BHIIIJICHHX
Ipyl y COLiaJIbHIA Mepexi: 3alpOlOHOBAaHUI METOJl BpaxoBye TaKUH IMOJLI, L0 JJa€ MOXKJIMBICTh
PO3TIISIIATH MPOLEC MOMUPEHHS 3 YpaxyBaHHIM Pi3HUX (HaKTOpIB.

Po3pobiena mMoxens (yHKIIOHYE 3a MPUHIMIIOM WMOBIPHICHOTO aBTOMarta, J¢ BCl BY3JIH
MIOYaTKOBO MAalOTh aTpUOYT CTaHy, PIBHMUA HYIO. Y pa3i YCHIIIHOTO CHpUHAHATTS iH(opMmarii
KOpPHCTYBa4 3MIiHIOE€ CBI cTaH Ha OJuHHIO. /[ MonenroBaHHS MOIIMPEeHHsS iHdopMmalii B
CoLiaTbHIA MEepeXi 3aIPONOHOBAHO HACTYITHUH aJITOPUTM:

a) Tmepes MOYaTKOM alrOpUTMY BU3HAYAKOTHCS areHTH [ 11111, SKi IHILIIOITh MOMIHPESHHS

iHdopmarii,;
b) craryc areHTiB 3MiHIOETBCS 3 HYJISI HA OJIMHHMIIIO;
C) oOupaeThes marpyna KOpuctyBadiB [1ooon0 C [, cepen AkuxX iH(opmallis croyatky
HNOMIHMPIOEThC. TaKoX 3a1a€ThCs KPUTHIHUHN TOpir [Joroonoon < [0 micast JOCSITHEHHS
SKOTO 1H(QOpPMALlis TOYMHAE PO3TMOBCIOKYBATHUCS TI0 BCI MEpexi;

d) xopucryBadi, siKi COpUiHIM iHPOPMAIlifO, TOYNHAIOTH MEpeaBaTH ii CBOIM cycizam 3i
CTaTyCcOM HYJIb i3 IEBHOIO HMOBIPHICTIO, BOJTHOYAC:

1) mepeBipsieThCS, YU HAICKUTH KOPUCTYBAY JI0 TPYIH TIEPBUHHOTO MMOIITHPEHHS;

2) ¥MOBIpHICTH MOMUpPEHH [lrnrnn 3MeHmyersest Ha [oononon(Honanan)
€ Upoooooo moe Dm?rrm?(]) € Unooon, SKIIo Bi}alaBHI/IK 1 OTpUMYyBa4d
1H(opMaIlli HAJIeKaTh 10 PI3HUX TPYIL;

3) BUKOHYeThCS CIIpoOa mepeaadi iHpopMartii;

4) SKIIO TOUIMPEHHS B MEXaxX MEpeXi CTae HEMOXJIMBUM (HANPUKIAA, depes3
0OMeXEeHHSI KUIBKOCTI 1Tepalliif), airOPUTM 3aBEPIIYETHCS;

5) mporec moBepTaeThCs A0 KPOKY 1) Ta MOBTOPHOETHCS JOTH, JOKH KiTbKiCTh
1H(QOPMOBaHUX KOPHUCTYBAUIB HE TOCSATHE 3aaHOTO TOPOTY [ rnranonm;

€) KOpHUCTYBadi, Ki CHPHUUAHSIN 1H(POPMAIIit0, TOUYHMHAIOTH Mepe/IaBaTH il BCIM CBOIM Cyciam

31 CTaTyCOM HYJIb 13 IEBHOIO HMOBIPHICTIO;

1) #MOBIpHICTH 3MEHIIYETHCS, SIKIIO BiIMPAaBHHUK 1 OTPUMYBa4 HAJIEXKATh JI0 Pi3HUX
TPy

2) poOuThcs cripoda MOMMPHUTH 1H(HOPMAIIILO;

f) anropuTMm 3aBepIyeThCsI, SKIIO BCI BY3JIM || 3MIHWIIM CBili CTATyC Ha OJJMHUIIIO;

g) SIkmio € HOBI By3JIH, SIKi 3MIHHJIM CBiii cTaH, a00 BUKoHaHO MeHIre 10 itepariiii, anroputm

MIOBEPTAETHCS 0 KPOKY €).

3Bakaroud Ha BCi (PaKTOPH, PEKOMEHIYEThCSI BUKOPUCTOBYBAaTH HMOBIPHICTH HMOLIMPEHHS
a00 KIJIBKICTh 3B S3KIB SIK KPUTEPIi JUIsl BA3HAUEHHS KOPUCTYBadiB y [, Y peaJbHUX yMOBax
TaKUMHU KOPUCTYBayaMH 3a3BUYail € HAWMOMITHIII i HailedexkTuBHIiII mommuproBadi iHpopmarii.
Kpim Toro, 3HaueHHs [/ noon000 MOXKE BH3HAYATHCS 3aJIeKHO BiJl KUTBKOCTI KOPUCTYBAuiB Y
Uooooo.
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[IpoBeneHo MopemoBaHHs Il ABOX corlianbHuUX Mepex 3 2000 kopucryBauiB Ta 5000
KOPUCTYBauiB 3 PpI3HOIO KIUIBKICTIO areHTiB Ta iX po3TalllyBaHHSA Yy COILIaNbHIA Mepexi.
[IpoanainizoBaHO MOMIUPEHHS B KOXHIA OKpeMiil rpym mepexi. Hwkdae na Puc.1, Puc.2 ta Puc.3
HaBEJICHO JIesIKi pe3ysbTaTH nomuperHs y mepexi Ha 5000 BepInH 3 0lHUM OYaTKOBUM areHTOM,
31 CTa areHTaMM PO3TAIIOBAHMMH I10 BCili MEPEXKI Ta 31 CTa areHTaMH 30CEPEHKCHUMU B OJTHIN TPYIIL.

Dynamics of spreading per step for each iteration
5000+ — —_—
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Puc.1 — Jlunamika mommpeHHs 3 OJTHUM areéHTOM BIUIUBY
Dynamics of spreading per step for each iteration
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Puc.2 — JIlunamika mommpeHHs i3 cTa areHTaMu BIUTUBY
Dynamics of spreading per step for each iteration
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Total number of infected

1000

0 5 10 15 20
Time

Puc.3 — JIlunamika nommpeHHs 13 cTa areHTaMU BIUIUBY B OJIHIN TPyIIi

BUCHOBKU

OaHMM 13 KJIIFOUOBUX aClEeKTIB MOJIEIIOBAHHS OLIMPEHHS 1HPOpMaIIil B COLIATbHUX MEPEKax
€ TIOZIT Mepex1 Ha TPYIH, 10 BigoOpaxae il mpupoHy cTpyKTypy. Takuii moain moxe 6azyBaTucs
Ha PI3HUX KPUTEPIAX, HAPUKJIAJA, MOBa CIUJIKYBaHHS, CIUIbHI IHTEpecH (CIOpT, irpoBa 1HAYCTPIs,
HayKa TOI0) abo 1HII XapaKTepUCTUKU. MoJIetoBaHHs MOMMPEHHs iHPopMalii B Mekax KOXKHOI
IpyHH Ta MK HUMH JI03BOJISI€ CIPOCTUTH 3a/1ady, IEPETBOPIOIOYH i 3 1HIMBITyaJTbHOTO aHAJI3Y [
KO>KHOT'O areHTa Ha MpoLEeC OLIHIOBAHHS JUHAMIKU MOIIUPEHHS Ul LIJIUX IPYI 3aJIe)KHO BiJ] THITY
1H(popMartii.

[lepcrieKTUBHUM HaINpsIMKOM MOAAJBIIMX JOCHIKEHb BOadaro po3poOKy Mojenei, ski
BpPaxoBYIOTh OCOOJIMBOCTI B3a€MO/IIi MIJK IpyIaMH, a TaKOX ONTHUMI3allisi METOAIB 1 apaMeTpiB 1is
TOYHOI'O MOJIENIIOBaHHs NouMpeHHs iHdopMariii. Cepen MOTEHIIMHUX MIIXOAIB 10 PO3IISILY —
MoJieb KIITUHHUX aBTOMATiB, MOJENb arperaiii oomexeHnoi audysii, moaensb [letpi Ta HelipoHHi
Mepexi. AHalli3 Ta MOPIBHAHHS LUX MOJENEH MOXYTh CHPHUSATH BHUSBIECHHIO MOXIUBOCTEH I iX
MOKpaIeHHsl Ta ajanTtamii 10 crenudikyd JociipKyBaHoi npobimemaruku. Lle, y cBow depry,
BIJIKpUBA€ TEPCHEKTHBU CTBOPEHHS TOYHOI, IIBUAKOI Ta e(EeKTHBHOI MOJeNi MPOrHO3yBaHHS
MOUIMpPeHHs 1H(OopMallii B COI[IaIbBHUX Mepexax.

Cnucoxk nocuJIaHb.
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YJIK 004.8
Bit P.B., Ma3ypeus O.B. (Xuenvnuyvkuil nayionanvHuu ynigepcumem, M. XmenvHuybkutl, Yxpaina)

TEMATHYHA KJIJACUDIKAILIA TEKCTOBOj TH®OPMAIIIl 3ACOBAMM OBPOBKH
IMPUPOJHOI MOBHA

Anomauyia: 3anpononosano nioxio 0o memamuyHoi kiacugixayii mexcmosoi ingpopmayii 3acobamu 06poobKu
NPUPOOHOI MOBU 0I5t ABMOMAMUZ08AHO20 I0eHMUDIKYBAHHS MA 2PYNYBAHHS MEKCMNIB 3a OCHOGHUMU memamu. L]et nioxio
cnpusie eqpekmuGHill opeanizayii 30epedicen s | GUKOPUCMAHHS 8EJIUKUX 0026 mMeKcmoeoi ingopmayii, opeanizosyrouu
cmpykmypoganuii docmyn 00 ii smicmy. [Iposedena kpoc-eanioayis npooemoncmpysana pesyiromam mournocmi 0.86, wo
Ha 0.15 nepesuwye mounicms, ompumary npu sukopucmauni LDA 6e3 0odamkoeux moougixayiti 0ns knacugixayil.

Knwuosi cnosa: memamuuna xracugixayis, oopobka npupoornoi mosu, LDA, idenmughikysanus mexcmis,
2PYNYBAHHA MEKCMIB.

Abstract: Approach for thematic classification of text information using natural language processing tools for
automated identification and grouping of texts by main topics is proposed. This approach contributes to the effective
organization of storage and use of large volumes of text information, organizing structured access to its content. The
cross-validation demonstrated an accuracy result of 0.86, which is 0.15 higher than the accuracy obtained when using
LDA without additional modifications for classification.

Keywords: thematic classification, natural language processing, LDA, texts identification, texts grouping.

[TocranoBka npobaemu

Temarn4na Kiracuikallisi TEKCTIB € MOMIMPEHAM IIAXOAOM [0 OOpOOKHM Ta aHali3y
HECTPYKTYPOBAHHX i HamBCprKTypOBaHI/Ix JIaHUX B opraH13au1ﬂx [1]. Lleit mpouec mosdrae y
TpyIyBaHHI TEKCTOBOI iH(QOpMALIT 3a MEBHUMH KATErOPiAMH 4 TEMaMH, IO [03BOJIA€ BHSBIIATH
KJIFOYOBI 171€1, TeHeHLIi Ta 1a0JI0HU B JaHUX.

3acTocyBaHHS AJITOPUTMIB MAIIMHHOTO HABYAHHSI 1a€ 3MOTY aBTOMATH3yBaTH aHAIIi3 TEKCTIB,
BUKOPHCTOBYIOUM KOHTEKCTYaJIbHI O3HaKW, IO 3HAYHO TIJBHUIIYE MIBHIKICTh 1 TOYHICTh
KJacuikarii.

AHati3 oCTaHHIX MyOTiKaIin

CydacHi ornsau 4yacto (OKYCYIOTbCS Ha IMOBIPHICHMX HiAXOJax JI0 TEMaTUYHOIO
MOJIEJIIOBAaHHS, ajleé Ba)KJIMBO TaKOK BPAaXOBYBAaTH METOIM, SIKI 0a3ylOThCs Ha JIHINHIN anreopi,
OCKLIBKI BOHH 3/1aTHi S(EKTHBHO MPEACTABIIATH TEMATHYHY CTPYKTYPY TEKCTiB [2].

Y céepi TeMaTHYHOrO aHasli3y TEKCTIB, 3aCHOBAHOTO Ha MAIIMHHOMY HaBYaHHI, IPOBEICHO
YUMaJIo JA0CIIPKEHb, OPIEHTOBAHUX Ha BUSBJICHHS KIOYOBUX CIIB 1 paz, a TAKOXK HA cpopMyBaHH;I
N-rpam 3a KpuTepieM peseBaHTHOCTI. Hampuknan, oaHe 3 1OCHIIKEHb BUKOPHCTAJIO MOMEPETHBO
HagyeHy Mozenmb BERT NLP Bin SberDevices, agantoBaHy 10 POCIiiCBKOMOBHHX TEKCTiB.
PesynpTatu cBiguaTh, 1m0 Ll Mmiaxia eQeKTUBHUN A aHATI3y TEKCTIB, SKIIO TeMaTHKa J00pe
pernpe3eHToBaHa y HaB4albHOMY Habopi nqaHux [3].

Ille omHe mocni)KeHHS BHUBYAJIO BIUIUB MPHUPOJHUX KpHU3 Ha (YHKI[IOHYBAaHHS JIAHIIIOTIB
MOCTa4YaHHsI, BUKOPUCTOBYIOUH JIaH1 COLIAIbHUX Mepex. st mporo Oyna po3polseHa CTpyKTypa,
10 [J03BOJSiE aBTOMAaTMYHO OIIHIOBATM BIUIMB Kpu3, Takux sk naxaemis COVID-19.
BuxopucTtoByroun aHaii3 TepMiHIB CHUIBHOIO BXO/DKEHHs Ta OOYIOBY KapTH 3HaHb, AOCIITHUKU
npoananizyBanu 1024 onnaiiH-3BITH. byio BH3HAYeHO II’STh KIIFOHOBHX HampsiMiB BIUIMBY Ha
JNQHIOTH MOCTAa4YaHHs: PO3APIOHA TOPriB/is MPOAYKTAMH, Xap4OBi IIOCIYTH, BHPOOHHMIITBO,
MOBE/IIHKA CIIOXKMBAYiB Ta JIoricTHKa. Ll Mojens crana eeKTUBHUM 1HCTPYMEHTOM ISl MIATPUMKH
NPUMHATTSA pillIeHb Y KPU30BUX YMOBax [4].

Merta po0oTH Ta TOCTaHOBKA 3aB/IaHb

Meroio pobotu € po3poOka METOAYy TEeMaTHYHOI Kiacudikaiii TexcToBoi iHQopmarii
3aco0amMu 00pOOKH MPUPOTHOT MOBH, 3AATHOTO MIABUIIUTH TOYHICTD 1 peJIEBAHTHICTh TEMATHYHOTO
aHaJi3y, M0 CIPUATAME TPUHHATTIO OOTPYHTOBAaHUX PIIIEHb HA OCHOBI TEKCTOBHX JaHUX.

Buknan ocHoBHOTO MaTepiany

Metoa TeMaTUYHOI Knacn(bucauu TEKCTOBOI lH(I)OpMaLlll 3acobamu O6p06KI/I HpI/IpOI[HOl MOBH
Ja€ 3Mory rNepeTBOPrOBaTU BXIIIHI TEKCTOBI ,Z[aHl y BI/IBII[ y BI/IFJ'IH,ZLI KIJIBKOCTI TEM, IlOMlHyIO‘-IOl TCMH
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KOXHOTO JOKYMEHTA Ta PO3IIMPEHOrO CIIHCKY KIIFOUOBHX CIiB A7 KOXHOI 3 TeM (puc. 1).
Po3pobnennii  migxis MO€AHYE THYYKICTH TEMAaTHYHOTO MOJENIOBAaHHS 3  MOXKIJIMBICTIO
aBTOMATHYHOI'O PO3LIMPEHHsS KIIOUOBMX CIIiB, 3a0e3leuyroud eQeKTUBHMHA TEeMaTUYHHUM aHaii3
TEKCTIB.

Bxioni oani:
- JOCTiKyBaHHH Hadip TeKCTiB:

v

Eman 1. ITio2omo6Kxa 00c1i0HCy8aHo20 HAGOPY meKcmie
- TOKeHi3alliA: - TeMaTH3alisg: - BHIATIeHHSI CTOI-CIiB.

v

Eman 2. 30006aHHA NOYAMKO6UX napamempié mooeni LDA
- KITBKICTh TeM TOMIO;

v

Eman 3. ITepemeopeHHA OOKYMEHMIE y 6eKMOPHE NPeoCmasieHHA
- BekTopH3auig TF-IDF:

v

Eman 4. Haéuanua LDA
- U1 KOKHOTO CTI0BAa B KOKHOMY JOKYMEHTI O0UHCTIOETHCSA MOKIHBICTE
IPHHAIEKHOCTI 10 KOKHOI TeMH:
- Ha OCHOBI HMOBIpHOCTeH cIIiB ¥ TeMax Ta HMOBIPHOCTeH TeM y JOKyMeHTax
NepepaxoBYIOThCA PO3MOMIIH TeM Ta CIIiB;
- BH3HA9YeHHA MHOKHHH KIIIO90BHX CIIiB 711 KOJKHOI 3 TeM.

v

Eman 5. /Ton06HeHHA KIHOU0GUX C1I6 KONHCHOT meMU Winb06UMU 00’ekmamu

v

Buxioni oani

- KiTbKiCcmb K1acie (mem) y euoipyi;
- NPU3HAYEHA OOMIHYIOUA MeMa 017 KOHCHO20 MEKCHY;
- nepenix KI0U08UX €18 01 KOHCHOT meMil.

Pucynok 1. ETanu MeTony TeMaTu4HO1 Kiacudikalii TekcToBoi iH(popmalii 3acodamu 00pooku

MIPUPOJIHOI MOBH

Ertan 1 (ITinroToBKa TEKCTOBUX JAaHWX) BKJIFOYAE€ TOKEHI3allil0, JEMATU3AIII0 Ta BUIAICHHS
CTON-CIiB, 110 3a0e3Meuye YUCTOTY Ta CTaHIAapTU3aLliI0 BX1THOIO TEKCTY /s MOJaNIbIIOlI 0OpOOKH.
Etan 2 (HanamryBanns napametpiB mozeni Latent Dirichlet Allocation) LDA HanamtoByeTbes Ha
BHU3HAUEHHS KUIBKOCTI TE€M Yy TeKCTaxX. SIKIo mapameTp KUIBKOCTI TeM HE BKa3aHWM, MOJEIb
ABTOMATUYHO 00Mpae onTUMaNIbHY KibKicTh TeM. Etan 3 (HaBuanns moneni LDA), Ha 1ipomy erari
00YHCITIOIOTHCSI KHMOBIPHOCTI TOTO, IO CJIOBA HAJIEXAaTh J0 MEBHUX TE€M, a JOKYMEHTH — 0 OKPEMHX
kareropiil. Lle 1o3Boisie 3a po3po0IeHUM METOIOM TeMAaTUYHOT Kiacudikallii TeKcToBoi iHpopmarii
3acobaMu 0OpOOKH MPUPOJIHOT MOBH BHU3HAUMTH PO3MOJLT TEM Yy TeKcTax 1 chopMyBaTH KIIHOYOBI
CJI0Ba IS KOJKHOI TEMH.

Eran 5 1OmOBHIOE MHOXHWHH KJIFOYOBMX CJIIB KOXHOI TEMHM IIILOBUMH OO0 ’€KTaMH 13
BPAaxXyBaHHsJM KIIIOYOBHX CIiB if IMEHHHKOBHX CYyTHOCTEH TPE/IMETHOI o0yacTi, Mo JOCATTH
MiABUIIUTA TOYHICTh BHSBJICHHS LITbOBUX 00’€KTIB MPEAMETHOI 00/1aCTi BHACIINOK BpaxXyBaHH:
IMEHHMKOBUX cyTHOCTeH. LliIboB1 00’€KTH BUCTYMAalOTh 00’ €IHAHOIO MHOXKHHOIO KIFOYOBUX CIIB,
3HaWJIEHUMH METO/IaMH1 MOILITYKY KIIFOUOBHX cJliB 6e3 moBTOpiB, Ta NER-MHOXMHOIO, sika 3rpynoBaHi
HUIIXOM JieMaTH3allii.

BuxigHuM#u JaHUMH METOJYy € KUTbKICTh T€M BHOIPKH, BU3HA4Y€Ha JOMiIHyIOYa TeMa IS
KO>KHOTO TEKCTY, TePeIIiK KIIFOYOBUX CIIIB IO KOXKHOT TEMH.
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3anmpomnoHOBaHUI MeTON TeMaTuyHOi Kiacu(ikamii TEKCTOBUX JaHUX CTBOPEHO JIs
ABTOMATH30BAHOTO 1IEHTH(IKYBaHHS Ta TPYMyBaHHA TEKCTIB 32 OCHOBHUMH TeMmaMmu. Llei miaxin
cripusie  eEeKTHUBHIN opraHi3amii BeTUKHX OOCATIB TEKCTOBOI iHGopMmarii, 3abe3nedyroun
CTPYKTYPOBaHUHU JOCTYII 70 ii 3MICTY.

ComianbHi Meia reHepyIoTh 3HauH1 00CSATH TEKCTOBHX JJAHHX, 110 MICTSITh TyMKH, KOMEHTapi
Ta 00roBopeHHs. BukopucTaHHS po3po0JIEHOT0 METOAYy MAJs aHali3y TaKkuX HaHUX J03BOJISE
3pO3yMITH OCHOBHI T€MH, SIKi IIKaBJIATH KOPUCTYBadiB, a TAKOXXK BUSBUTH 3arajlbHi HACTPOi Y
CHUIBHOTI.

Jlist mpoBeieHHs TOCITiKEHHS 00paHo aHrIoMOBHHMI nataceT "fake-and-real-news-dataset”,
KU nofiiieHo Ha nBa Qaitnu: "Fake.csv" (mictuth 23,502 ¢deiikosi crarti) Ta "True.csv" (MiCTUTh
21,417 nocroBipuux HOBHH) [5]. IIporpamny peasizaliiro MeToy BUKOHAHO y cepenoBuili Google
Colab i3 BukopuctanHsam Jupyter Notebook. VY mporeci TemMaTHYHOrO MOJEIIOBaHHS 0€3
NOTIEPETHHOT0 BU3HAYEHHS KIJIBKOCTI TEM ONTHMAJIbHA iX KUIBKICTh Oysla BCTAaHOBJICHA HA OCHOBI
KorepeHTHocTi Mozeni — 14 tem. I'padik KOrepeHTHOCTI, SIKUi IEMOHCTPY€E MaKCUMaJIbHE 3HAYECHHS,
HaBEJECHO Ha puc. 2.

Sk moKa3aHO Ha PHC. 2, ONTHMAaNbHA KUIBKICTh TeM BU3HAYAE€THCS TOYKOK MaKCHMAIBHOIO
3HAYEHHS KOT€PEHTHOCTI. }hcmo KOTEGPEHTHICTH MPOJIOBXKYE 3POCTATH, LIE CBIIYHUTH PO MOXKIIHBICTH
BUTAIYBAHHS JOJATKOBMX TeM. 3BOPOTHA TCHJCHIIS YM CTabLIi3allisi BKasye Ha JOCSTHCHHS
ONTUMAJIFHOTO PO3MOALTY. BiAnoBigHO, TeMaTUYHE MOAETIOBaHHS 0YJI0 BUKOHAHO 3 KJIacU(iKAIli€l0
Ha 14 Tem.

optimal_lda_model = model_ list[coherence_values.index(max(coherence values))]
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Pucynok 1. BusHaueHHs1 ONTUMAaIbHOI KIIBKOCTI TEM

Jlnst mepeBipKH SKOCTI MOJIeNl BUKOPUCTOBYBAJIaCh Kpoc-Bajliawis 3 I’ siTbMa ¢oinamu [6,
7]. YV pamkax wi€i mpouenypH AaHi MOAUISUIM Ha ATk YacTHH, /1€ YOTUPU BUKOPUCTOBYBAIUCH JJIS
HaBYAHHA, @ OJHA — JUIs TeCTYBAHHs: [8]. Hpouec MMOBTOPIOBABCS IT’ATh pa3iB, M0 3a0€3MEYHIIO
piBHOMIpHE BUKOPUCTAHHS BCiX YaCTUH Y POJIi TECTOBOI.

Pesynprat mokasanu, 1o omiHka ToyHocTi ctaHoBwia 0.71 mis 6a3oBoro minxony 6e3
JIOTIOBHEHHS KJIFOUOBMX CIiB Uit TeM Ta (.86 MpH BUKOPUCTAHHI PO3IIUPEHOr0 HAOOpy KIFOYOBUX
cmB [8, 9]. Sk xmacudikaTtop 3actocoByBaBcs anroput™m SVC, 1e HaBUaHHS MPOBOAMIOCH Ha
kimouoBux cioBax [10]. Ominka 0.71 orpumana nuissxoMm kimacuuHoi kimacudikamii momgeni LDA.
Bucoki 3Ha4eHHsI TOYHOCTI CBiIYaTh MpO €(EeKTUBHICTh METOJy, HE3BaXKAI0UM Ha HEpiBHOMIpHUH
PO3IMOALT JaHUX MK KJIacaMH Ta 3HAYHY KUTBKICTh TeM [11].

[Tomanbmn gocmikeHHs OyyTh CIPSMOBaH1 Ha MOKPAIlleHHs TOYHOCTI Kilacudikailii 3a yMOB
HEPIBHOMIPHOTO PO3IMOAUTY JaHUX MIJK KJIJaCaMH, a TAKOK Ha BUBYEHHS AJIbTEPHATUBHUX AJITOPUTMIB
JUIS. TEMaTUYHOTO MO/ICTIOBAHHS.
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BHUCHOBKH

3anporoHOBaHO TEeMAaTHYHOI Kiacudikallii TexcToBoi iHdopMmarii 3acobamMu 00pOOKH
NPUPOIHOT MOBH JJIsi aBTOMATU30BAHOTO 1IEHTU(IKYBaHHS Ta IPYIyBaHHS TEKCTiB 32 OCHOBHUMH
temamu. Llei miaxin cnpusie epeKTUBHIN opraHizamii 30epekKeHHS 1 BUKOPUCTAHHS BEJIMKUX 0OCSTIB
TEKCTOBOT iH(OpPMAILlii, OPraHi30BYIOUH CTPYKTYPOBAHHUM JOCTYI /10 ii 3MicTy.

3anporoHOBaHUK METO/I BIAPI3HAETHCS BiJl aHAIOTIB MOMJIMBICTIO TUHAMIYHOTO BU3SHAYCHHS
TEM 3aBISKH BHKOPHUCTAHHIO TEMaTHYHOTO MOJETIOBAHHS, a TAaKOX PpO3IMKPEHUM HabOpoM
KIIOYOBHX CJiB. Y I[bOMY METOJI MO€JHYIOThCS KIIIOYOBI ciioBa, oTpumani uepe3 LDA, 3
JOJJAaTKOBUMHU IIJTbOBUMHU TEPMiHAMHU, PEIEBAaHTHUMH J0 MPEAMETHOI 001acTi.

Meton OyB peanizoBaHHil MPOrpaMHO Ta MPOTECTOBAHUN HA aHIJIOMOBHOMY HaOOpi JaHHX.
3a pe3yabTaTaMH TEMAaTHYHOTO MOJEITIOBAaHHS OyJ0 BCTAHOBJIEHO ONTHUMAJbHY KUIBKICTH TEM Y
nataceti 14. [IpoBeaena kpoc-Bastijiallisi MpoAeMOHCTpYyBayia pe3ysnbratr TouHocTi 0.86, mo Ha 0.15
NEpEeBUIIlyE TOYHICTh, OTPHUMaHy Npu BuUKopucTanHi LDA 06e3 momatkoBux Monuikamii s
Kiacudikarii.
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HIAXOU 10 INONEPEIHBOI'O ONPAHIOBAHHA YACOBUX PAIIB 1A
INIABUINEHHSA TOYHOCTI IPOT'HO3YBAHHSA HEUPOMEPE KEBUMHU
3ACOBAMM

Anomauin: Y pobomi npedcmasieno 08a nioxoou 00 NonepeoHbo20 ONPAYOEAHHS YACOBUX PSOI6 3 MEMOK
niosUUeHHs MOYHOCMI IX NPOSHO3YBAHHS 34 OONOMO2010 Helpomepedcesux memodis. Ilepwiuii nioxio nonseae 8 nepexooi
3 uacoeoi obiacmi 6 YACMOMHY 3 BUKOpUCMAHHAM nepemeopenus Dyp'e. [pyeuii nioxio sabesneuye cymiche
BUKOPUCMAHHA OAHUX, NPEOCABNIeHUX AK Y Y4acosill, max i 6 yacmommii ooracmsax. Excnepumenmanvie MoOemo8anHs
000X Memodi8 3 BUKOPUCIAHHAM apXIMeKmypu 2iuboK020 HA8UAHHS NiOMEepOUIo ix egheKmusHicme, NPU YbOMy Oeujo
Kpawi pe3yromamu 6y10 OMPUMAHO 0I5l NEPULO20 RioxXooy.

Knrwowuosi cnosa: uacosi psaou, npocno3yeanus, HeupoHHi Mepedici, nonepeone onpayioeants, nepemeopeHHs
Dyp’e, 3aMina 03HAK, POSULUPEHHS O3HAK.

Abstract: The paper presents two approaches to preprocessing time series data in order to improve the accuracy
of their forecasting using neural network methods. The first approach involves transitioning from the time domain to the
frequency domain using Fourier transform. The second approach ensures the combined use of data represented in both
the time and frequency domains. Experimental modeling of both methods using deep learning architectures confirmed
their effectiveness, with slightly better results achieved for the first approach.

Keywords: time series, forecasting, neural networks, preprocessing, Fourier transform, feature substitution,
feature expansion.

[TporHo3yBaHHsI 4acOBUX PsIiB € OJHIEI0 3 HAWBAXIMBIIIUX 3a/lad y CydacHId aHAIITHI
naHuX. B ymoBax cTpiMKoro 3poctaHHs oOcsTiB iH(popmarii Ta CKIQIHOCTI CUCTEM, 3 SSKUMU MH
CTMKA€eMOCSI, BUKOPUCTaHHs HEHPOMEPEeKEBUX 3aCO01B ISl L1€1 METH CTa€ BCE OLIbI MOMYJIAPHUM.
AKTyanbHICTD 3aJadi MPOTHO3YBAHHS YaCOBHX PSAIIB 30KpeMa HEHpOMEpEe)KeBHMH 3aco0aMH B
pI3HUX MPUKIAAHUX OOJIACTSX 3YMOBJEHA IMOTPEOOK y TOYHUX 1 CBOEYACHMX MPOTrHO3aX [yIs
YIOpaBIIHHS pecypcaMu, ONTHUMI3allli HaBaHTaXXEHHs Ta 3MeHIeHHs BuTpar [1]. Heitpomepexi
INIMOOKOT0 HaBYaHHS 3/aTHI e€(eKTHUBHO aHali3yBaTH CKJIAJHI MAaTepHU B JIAHUX, L0 J03BOJISE
MOKPAILUTH MPOTHO3YBAHHSI CIIOKMBAHHSI €HEPTii, BUPOOHUIITBA 3 BIAHOBIIOBAJIBHUX JUKEPEI Ta LiH
Ha enekTpoeHeprito [2]. Lle ocoGiuBO BaXJIMBO B YMOBaxX HECTaOLIbHOCTI PUHKY Ta 3MiHU
KJIIMaTUYHUX YMOB, JI€ TPAJUIIIiHI METOAN MOXYTh OyTH HEJOCTaTHBO €(PEKTUBHUMHU.

Opnnak, He3BaKAlOYM Ha TMOTEHIIWHI TepeBard, MaHWW TMIAX1JA CTUKAEThCS 3 HHU3KOIO
cepiiozHux mpobiem [1], cepen SKUX CliJl BUAUTUTH HECTAOUIbHICTh AAHUX, HAa SKUX 0a3ylOThCS
IIPOTHO3H, BUMOTH 10 OOUHCITIOBAIbHUX PECYPCIB, IPaBUIIbHUNA BUOIp apXITEKTypu HEHpomepexi Ta
BUKOPUCTaHHS KOPEKTHUX METOIB IONEpPEJHbOr0 OMpAIlOBaHHS JaHMX. BiiacHe BHpillIEHHIO
OCTaHHBOT 33741 MPUCBIYCHO 110 pOOOTY.

Ha cborossi icHye 4MMaso TEXHIK MOMEePEeHbOr0 OMPALOBAHHS AAHUX, 3aCTOCYBAHHS SIKHX
MO’K€ MIIBUILUTH TOYHICTH 1 HaBITh 3MEHIIUTH TPUBAIICTh MPOILEAYpHU HaBYaHHA 0OpaHOi MOJENI.
Cepen HanifHUX Ta €(pEeKTHBHUX HA CHOTOIHI CJiJl BUAUIUTH METOJIH MOMEPEJHBIO ONpAIIOBaHHS
MaHuX skl Oa3yroThesi Ha meperBopeHHI Dyp’e [2]. 3okpema y [3] 3amponoHOBaHO CyMiCHE
BUKOPHCTAHHS IIbOT'0 IEPETBOPEHHS 13 HEMpOMEpEekKero TUITY JOBra KOpOTKOYacHa mam'ate. B 1ibomy
BUTIAJIKY TiepeTBOpeHHsT Dyp’e BHUKOPHCTOBYBABCS ISl OTpUMaHHs (pa3u KOMIUIEKTHOTO YHCia i
3aMiHM BIJUTIKIB YacOBOI MOCIIJJOBHOCTI Ha BHILEBKA3aHy O3HaKy. ABTOpU MOKAa3alH, IO TaKUi
MiJX1J JI03BOJISE 3HAYHO IIOKPAIIMTH TOYHICTH MPOTHO3IB 1 BOAHOYAC 3abe3neuye HU3bKY
00UYNCTIOBAJIBHY CKJIAJIHICTh y TIOPIBHSIHHI 3 KJIIACHYHUMHU MeTojaMu. He3Bakaroun Ha TO3WTHBHI
pe3ysbTaTH, 3alpPONOHOBAHUN MIJIXiJl Ma€ psii OOMEXeHb, 30KpeMa BHUKOPHCTAHHS JMIIE AIMCHOI
YaCTMHM KOMIUIEKCHOTO 4YHClIa He 3a0e3nedye HeoOX1AHOi 1HQOPMATHUBHOCTI M IMITYYHOI
HEHPOHHOT MepeKi M0 3MEHIITYE i MOTEHIIHHI MOKIMBOCTI IIOJI0 OTPUMAHHS I11€ OLIBIIOI TOYHOCTI
NPOTHO3YBaHHS.

VY wiit poboTi MPONOHYEThCA J1BA 1HIIMX BapiaHTH BUKOPUCTaHHS nepeTBopeHHs Dyp’e, a
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came (a3u 1 aMIUTITyId KOMIUIEKCHOTO YHWCJa JJIs MOMEPEIHBOr0 OMPAIFOBAHHS YaCOBHUX DPSIIB.
3riHO MEepIIOTo MiAXO0ay, KOKEH BiJUTIK YacOBOT MOCIiAOBHOCTI 3aMiHIOETHCS Ha a3y 1 aMILTITyay.
Takum YMHOM BiTOYBa€ThCs IIOBHUI MEPEXiJl 3 4aCOBOI B YaCTOTHY 00JIACTh. 3TiIHO JPYroro, KOXKeH
BIJUIIK YacOBOI1 MOCHIIOBHOCTI JOMOBIIOETbCA (Da30i0 Ta aMIUTITYJOI0 KOMILJIEKTHOTO YHCIa IO
3a0e3reuye MOKIIMBICTh BpaXyBaHHS IEpPEBar OMPAIFOBAHHS YaCOBOTO PsIY K B YaCTOTHIN Tak i B
qacoBiii oOmactsax. EkcrepuMeHTanbHI JOCHIDKEHHS MO0 OLIHIOBaHHS e(EeKTUBHOCTI 000X
MIIXO0/IIB BUKOHYBAJIUCS 13 BUKOPHUCTAHHS apXITEKTypu TpaHchOpMEpIB Ta 3arajabHOIOCTYITHOTO
gacoBoro psany (3 miatpopmu AEMO) mig bac po3B’s3aHHS 3a4adi MPOTHO3YBaHHS pPiBHSA
CIIO’KMBAHHS BITPOBOi eHeprii. Pe3ynbratu ekcriepruMeHTIB 3BeeHO y Tabmuiti 1.

Ta6mumst 1. Pesynbrate pob60TH apXiTeKTypH TpaHchopMepiB 1] 4ac BUKOPUCTAHHS 000X ITiIXO/IIB
JI0 TIOTIEPETHHOTO OMPAIFOBAHHS YACOBHX PSIIiB

Hl;[Xlz[\g/IeTpHK MASE SMEAP MSE MAE
Hpyrwii miaxin | 1.501 0.65 22.784 | 4.763
[eprmmii minxin | 1.507 0.655 22.78 4.768

3a pe3ynpTaTaMH EKCIEPUMEHTIB BHUIHO, IO 3alpONOHOBAHI MIAXOAU TMOIMEPEIHHOTO
OTIPAIIOBAHHS YaCOBUX PSAIIB JIEMOHCTPYIOTH YK€ CXOKI pe3y/IbTaTh 3a BciMa MeTpukamu. [Ipote
JIEII0 Kpaill pe3ydpTaTH OTPUMAHO caMme JUIsl MEPIIOro MiAXOAY, NaHl SKOro OXOIUTIOITH JIUIIIE
4acToTHYy 00nacth. lle MNOACHIOEThCS HEOOXITHICTIO aHali3y MEHIIOl KUTBKOCTI MaHHX, IO
3a0es3neuye OiMbIIy reHepanizainiro HeWpomepexi. IIpote iHmi 3amaui moTpeOyIOTh IETAIBHOTO
BHUBYCHHS €(pEKTHBHOCTI poOOTH 000X MiAXOIIB.,

BUCHOBKU

Y po6oTi mpeacTaBaeHo ABa METOJ] MONEPETHHOTO OMPAIIOBAaHHS YacOBUX PSAIB Ha OCHOBI
BUKOpPUCTaHHS TepeTBopeHHsT Pyp’e. OOuaBa METOAM MOKAa3yIOTh Maibke OJHAKOBY TOYHICTh
MPOTHO3YBaHHS MPOTE JIEMIO Kpalll pe3yabTaTH OTPUMAHO 13 BUKOPHCTAHHS MEPIIOTO MiIXOIY.
[Tomanpm mocmikeHHsT 0a3yBaTUMYThCSl Ha OILIIHIOBaHHS €(EKTHUBHOCTI 000X IMIJAXOMIB MiJ Yac
PO3B’sI3aHHS PI3HOMAHITHUX 33/1a4 MPOTHO3YBaHHS YaCOBUX PSIIB.
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BIL/INB IITYYHOI'O IHTEJIEKTY HA JIITEX TA IIJIJIITKIB: HABYAHHS,
PO3BUTOK, BJIAT'OIIOJIYYYSA

Anomayia: Y cmammi po3enaoaemscs 6niu wmyuHo20 inmenekmy Ha oimeti ma nioaimkis, 30kpema y cgpepi
HABYAHHS, PO3GUMKY MaA O1A20NOYYYs. ABMOp aHANI3YE AK NOZUMUBHI, MAK | HE2AMUBHI ACNEeKMU NPOBAONCEHHS
WMYYHO20 IHMeNeKmy 8 OC8IMHIl npoyec, a MaKoI’C MOAUCIUGT HACTIOKU OJis1 KOZHITMUBHO20, COYIATbHO20, NCUXOLO2IYHO20
ma ¢isuunozo cmany Oimei. Ocobausa yeéaza NpuoilAEMbCs NUMAHHAM NEPCOHANIZAYI] HABYAHMS, SUKOPUCHAHHIO
IHMeNeKmyanbHux 000AmMKI6 mMa GUKIUKAM, NO8 SI3AHUM 13 3ANedCHICMIO, KibepOynineom 1 0e3neKoi OaHux.
3anpononosano nioxio 0o iHmezpayii WMyuHO2O IHMENEKmMy, W0 6PAX08YE emUUHi ACHeKmu I CAPIMOBAHUL HA
RIOMPUMKY 300P08020 PO3GUMKY Oimell.

Knruosi cnosa: wmyunuii inmenexm, 0imu, nionimkuy, HAGUAHHA, KOSHIMUBHT HABUYKU, NePCOHANIZAYIs, emUYHI
acnexmu, yughposa 3anexcHicmo

Abstract: This article examines the impact of artificial intelligence on children and adolescents, particularly in
the areas of education, development, and well-being. The author analyzes both the positive and negative aspects of Al
integration into the educational process, as well as the potential consequences for children's cognitive, social,
psychological, and physical states. Special attention is given to the issues of personalized learning, the use of intelligent
applications, and challenges related to dependency, cyberbullying, and data security. An approach to Al integration is
proposed, considering ethical aspects and aimed at fostering healthy child development.

Keywords: artificial intelligence, children, adolescents, education, cognitive skills, personalization, ethical
aspects, digital dependency

IMocTtanoBka npo6Jemu. [Tounnaroun 3 2007 poky, konu Cri J[>k0OC mpeacTaBuB CBITOBI
iPhone, mouanacs 3miHa JanamadTy He JHIIEe B TEXHOJOTIYHIHM, a i y ocBiTHIN cdepi. Efdopis
HABKOJIO Ii€i mozii 3armymmia OUTbIIcTh MOOO0BaHb, MPOTE 3rOJOM €HTY3ia3M IOYaB 3racaTé B
Mipy TOTO, SIK TOYaJH CIUIMBATU TPUBOXKHI MPOOJIEMHU: y4UHI, a TAKOX iXHI BUUTEN Ta OAaTbKH BCe
YacTille BUSABISUINCS MPUKYTHMH JI0 CBOIX TaJKETIB, IO MPU3BOAMIIO JI0 IUIOTO PSTy HETATUBHUX
HACJIAKIB, BKJIFOYAIOUYH MOTIpIIEHHS 0Jaromnoiyyddsi y4HiB, 3pOCTaHHS PiBHS JeNpecii, TPUBOXKHOCTI
1 HaBITh JYMOK Mpo caMory0cTBo. BunTensm cTaBano Bce BaXkue IPUBEPHYTH yBary y4yHiB, sIKl 4acTO
BiJiBoJiKanucs Ha cBoi cMapTdonu [1]. 3a craTUCTHKOIO, 4YacTKa MAiTed, SKI KOPHUCTYIOThCS
Iareprerom BikoM Bix 12 1o 17 pokiB, myxe Bucoka: 93% y micrax ta 88% y cinbChKii MiCIIEBOCTI.
3okpema, 98% niteil pobasATh 1e uepe3 cMapThonu [2].

3BUYATHO, CHOTO/IHI HE JIMIIIE IITH, @ i 6arato JOPOCIUX 3aX0/IATh y COIialbHI MEPEKI Yyepe3
cMmapTdoHu uu miaaHmeTd. O1HaK, He3BaXKAOUU Ha Te, 110 e JyXKe 3pyYHO 3 TOUKH 30pYy MIATPUMKH
3B'SI3Ky, Taka I1107000Ba JOCTYNHICTh MOYKE€ BHKJIMKATH MpPOOJIEMH 3 KOHTPOJEM IMITYJbCIB, a
HOCTiHI OMOBILIEHHS Ta MOBIIOMJICHHS, 1110 BIUIMBAIOTh HA KOHLEHTPAIL[I0 Ta yBary, MopyumyoTh
COH 1 BUKJIMKAIOTh 3aJICXKHICTh BiJl comiayibHUX Mepex [3]. Ha momatok 10 1mbOro KOMIUIEKCHHM
PO3BUTOK KOMI'IOTEPHHX Ta 1HTENEKTyalbHUX 1H(GOPMALIHHUX TEXHOJIOT1H 103BOJUB HAOIU3UTHCS
JI0 CTBOpEHHsI cuiibHOro mTy4yHoro iHtenekty (LLII). 3'sBuBcs TepMiH «reHEepaTHBHUM IITYYHHM
IHTENEKT», 110 Bi10Opakae BaXJIMBUN KPOK MPOLIECY CTBOPEHHS IHTEJIEKTY, MOAIOHOTO 10 IHTENIEKTY
JFOTUHH.

Hacnpasni, LI He € unMoch 1HHOBAIIITHUM, MIPUHIIMIIOBO HOBUM, IpoTe nosiBa y 2022 poui
6e3komToBHOI Bepcii ChatGPT 3MiHnna ysBiieHHs 6aratbox Jrojei npo 1o TexHonorio. CboroaHi
MTYYHUNA 1HTEJNEKT, Oyay4dd TOJOBHUM MPOAYKTOM IH(PoBOi TpaHchopmallii CydacHOTO
CYCHIBbCTBA, MPOJOBKYE CTPIMKO BIIPOBAKYBATUCh y BCi chepH HAIIOrO JKUTTS, HEBIJI'€MHOIO
YaCTHHOIO SIKOTO crajio 3actocyBaHHs IlII-TexHomoriii y BUIUIAAI TOJIOCOBHUX MMOMIYHMKIB a0o
NOLIYKOBUX cucTeM. [lepeBakaiouu IIOJUHY 3a HU3KOI MapaMeTpiB, IUTYYHUH 1HTEJIEKT
JEMOHCTPYE €(PEeKTUBHICTh Y BUPILICHH] 3aBJAaHb Y rainy3l MEJUIIMHU Ta OXOPOHU 310POB'A, HAYKU Ta
OCBITH, TPOMHUCIIOBOCTI Ta Oi3Hecy Tomo [1].
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OnHe 3 OCHOBHMX MMTaHb, L0 NOPYUIYIOTECS Y 3B'A3KY 3 LIUM, MOJIATa€ y Mepejadl Hamol
iHTenekTyanbHoi npai I, mo, y cBoro uepry, Tarae 3a co6oro (GyHIaMeHTa bHI MUTAHHS 11100 POl
BUMTENIB Ta YYHIB, @ TAKOX PO BIUIMB LITYYHOT'O IHTEJIEKTY Ha HAaBYAHHS Ta PO3BUTOK JITEH Ta
niamiTKiB. Y gomkineHiA ocBiti Il cTaB BipTyadbHUM YydMTeNeM, TOBApPHILEM 3 HAaBYaHHSA Ta
OMIKYHOM, HAJIal0Yd KOTHITHBHY Ta COILIQJIbHY MIATPUMKY MAJICHBKUM IITAM, sIKi (DAaKTHYHO €
KIHIICBIMH CITO’KMBAaYaMU I[bOTO MPOIYKTY [4].

3 mouaTkoM maHjeMii kopoHaBipycy B 2020 porii KiIbKICTh €KpaHHOTO Yacy (IPOBEIEHOTO
Ol ekpaHiB cMapTQOHIB, IUIAHIIETIB YA KOMITIOTEPIB) 3pocia B pa3u. Konu AuTHHA HAaBYAE€THCS
JTUCTaHIIMHO (a MTUCTAHIIIMHUMU B LIeH mepioa OyJid 1HOJI HABITh IUTSAYl CaIKH), JOCUTH CKJIAIHO
3aXUCTUTH ii BiJ rajpkeTiB. OJHAK HIIA CUTYaIlis 13 cepBicamMu Ha ocHOBI 1. BoHM MOXyTh HE TPOCTO
HajaBaTu 1HGOpMaIilo, a i HaBYATH, BINOBIATH HA 3alIUTaHHS Ta HaBITh KOHTPOJIOBATH KOHTEHT
[5].

Bce 1ie Bukiukae neBHI moOOIOBaHHS, OCKUIBKHM ICHYE HMOBIPHICTH TOTO, IIIO MOJKJIUBICTH
MEPEKJIACTH Ha TEXHOJIOTIi BUPIMICHHS 3aBJaHb Ta peani3allifo KOTHITUBHUX (DYHKIIN MiJABUIIUTH
3aJIeXKHICTh BiJ HUX, a BJIACHE JIFOJICHKI 3/II0HOCTI 10 BUKOHAHHS WX (YHKIIH OCIabHYTh, aX JI0
noBHOI BTpatu [6]. Kpim Toro, € miaTBepHKeHUH MPSIMUKA CTaTUCTHYHHNA 3B'I30K MK KUIBKICTIO
IPOBEIEHOTO 33 €KPaHOM IM(PPOBHX HPUCTPOIB yacy Ta mpolieMaMu B ramy3i 3J10pOB's, BiJ
¢iznyHOTO HEONAromoNyydsi y BUTJSAI HENPaBWIBHOTO XapuyyBaHHS Ta HaIMIpHOI Baru [0
JIETIPECUBHOI CUMIITOMATHKH Ta 3araJibHOr0 3HWXEHHS SIKOCT1 ®UTTS. Ha BiqMiHY BiJ LIbOTO, IOMipHE
3aCTOCYBaHHA IU(PPOBUX TEXHOJIOTIH J03BOJISAE 3/IHCHIOBATH YCIINIHY COIiaJIbHY IHTErpaIiio Ta
3HIKYBATH JENPECUBHI BIIUYTTS, 110 CIIPUSE MiABUILEHHIO 3arajIbHOTO PiBHS 100pOOyTY.

VY 11bOMY KOHTEKCT1 F'OJIOBHOIO TypOOTOIO € 3a0e31eueHHsI TOro, 11100 BUMUTEN Ta e1aroru Ha
BCIX PIBHSAX He JuIe Opanu yyacTh y Aiano3i npo BukopuctanHs Il B ocBiTi, a it cripsMoBYyBau HOTO.
Ctumynioroun BiIKpUTe OOTOBOpPEHHS, PO3AYMH Ta KPUTHUHHUHI aHali3, MOXJIHMBO, BIACTbCS
nepeadayuTu MpoOJIeMHU, BUSBUTH MOXKIHMBOCTI Ta PO3POOMTH €THYHI pPaMKH Il KEPIBHHUIITBA
inTerpaniero Il B ocBity [1]. Takwmii miaxia MOXe JOMOMOITH BUKOpHUCTATH TiepeBary II, mpu 1ipomy
3HIKYIOUM PU3UKU Ta FapaHTYIOUH, 10 TEXHOJIOTI] MOKPAaIlyl0Th, @ HE MOTIpIIyIOTh BUKJIAaHHS Ta
HaBYaHHS. X04a HEMOJKJIMBO Tepe10auuTH BC1 HACIIIKH BiJl BAKOPUCTAHHS 1Ii€i TEXHOJOT11, SIKa BCe
Ie UIBHJKO DPO3BHUBAETHCA, 32 JIONMOMOIOK KOJIEKTUBHOTO PO3JyMY MM MOXKEMO CTaTH OibIl
0013HaHMMH, TOIH(MOPMOBAHMMHU 1 TOTOBUMHU JO MONEPEKYBATLHOTO YCYHEHHS MOTEHLINHUX
HETATUBHUX HACIIAKIB.

AHaJii3 oCTaHHIX J0CTaiKeHb Ta nyOJaikanii. J[0CIiPKEHHIO IITYYHOTO 1HTENEKTY, B TOMY
yucai Horo pormi y cdepi ocBiTH, 6arato yBard NpUAUISIIM SIK BITYM3HSAHI, Tak W 3apyOikHI
nocininauky, Taki sk Paccen C., Hopgir I1., boopo H., Komsica O., IOxumens C., Aur B., Jlarren C.,
Cy L., Hr 1., Yy C., Mixensc C., Kamyp A., Bepma B., Inp Croii Ta iHmIi.

BuninenHs HeBUpIlIEHUX paHIlE YacTUH 3arajbHOi mpoOiemu. Hespaxaroun Ha Te, 110
BukopuctanHs LI B 0cBITHbOMY NpoLieci BUBYAETHCS BXKE BIIHOCHO JaBHO M iCHYIOTh PI3HOMaHITHI
JOCTIPKEHHS 3 1IbOI0 MPUBOAY, OUIBINICTh 3 HUX MpucBA4YeHa cdepl BUILoi ocBiTH. [Ipu npomy,
3/1e01IBIIOT0 B HUX WIEThCSA MPO Te, SIK MOXKYTh BUKOPMCTOBYBATH LITYYHUIN 1HTEIEKT TI YW 1HINI
3alliKaBJeHl CTOPOHH, a00 Kl MepeBaru Ta HEAOJIIKM MOKHA BiJ IIbOrO OTpuMaTH. BTim, HaBiTh y
MDKHapOHIM NpaKkTUIll Maii)ke He MPUIUISETHCS yBara MUTaHHIO TOro, sk BrutnBae 11 Ha niTelt — gk
JOLIKUIBHOTO BIKY, TaK 1 IIKOJISIPIB MOJOIIMX Ta CTAPLIMX KJIaciB. Bulbll TOro, TOCHITHUKHA BKpai
MaJlo yBaru NpUIUIAIOTH caMe OJIaronojayqyio Ta pO3BUTKY JiTel, KOHIIEHTPYIOUUCH 3HOBY K TaKU
Ha TOMY, SIKI TIepeBaru/HEJONIKM OTPUMAIOTh BYMTENI, SIKHM YHHOM MOKHA IMIUIEMEHTYBAaTH
IHCTPYMEHTH LITYYHOT'O 1HTEJIEKTY B OCBITHIN MPOIIEC TOIIO.

MeTtoro cTaTTi € BU3HAaYeHHs MOXJIuBoro BBy Il He TibkM HA KUTBbKICHI (KUIBKICTBH
OTpUMaHUX 0alliB, NIBUAKICTh BUPILLIEHHS 3aBJaHb 1 TaK JjaJi), ajie i Ha SKICHI MapaMeTpy HaBYaHHS
3 TOYKM 30pYy IXHBOTO DPO3BUTKY, Taki $K, HalpHUKIaJ, PO3BUTOK KOTHITMBHHUX HABHYOK abo
TICHIXOJIOTIYHE Oyaronoiyqus. BuBUeHHsS KOXKHOTO 3 IIMX HANpsSMKIB — HaBYaHHS, PO3BUTOK Ta
Oyaronoxy4us — siBjs€ COOOI0 OKpeMe 3aBAaHHS B paMKaxX LbOTO JOCIIIKEHHS.

BukiiajeHHs1 0OCHOBHOIO MaTepiajny AocHiIkeHHs. ABTOMAaTH3allisd Ta IITYYHUN 1HTEIEKT
paIuKaibHO 3MIHIOIOTH PUHOK Ipalli, TOMY i€ 3 MOYaTKy MaHJAeMii KOpOHaBipycCy AJs TOro, o0
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OyTH yCITIIIIHUM, Ha MepInii ian cranu BuxoauTu SOft skills: naBuuku mixkocoOucTiCHOT B3aeMOIil,
3IaTHICTh IO CIIIBIIEPEKUBAHHS, KpeaTwBHICTh Ta iHme [7]. lle mpus3Beno mo Toro, mio
3aTpe0yBaHICTh COIIAILHUX Ta EMOIIMHUX HaBUYOK, TAKUX 5K 3J]aTHICTh BUPIIIYBAaTH MPOOJIEMHU Ta
B3a€MOJIISITH 3 IHIIMMH, Ha PUHKY TIpalli MOCTIHHO 3pOCTaE.

[TigBHUIIEHHIO YBaru 1O PO3BUTKY IIMX HABUYOK CHPUSAB y TOMY YHCII JTOCTYIl Y4YHIB JI0
IarepHety Ta conianbHuX Mepex. [lommpeHicTs «perKkoBUX» HOBHH, IOKYIOYHX 00pa3iB Ta icTopii,
npo0aeMu KOH(IASHIIIHHOCTI Ta 3aXUCTY JJaHUX, & TAKOK THCK Ha JITEH Ta MOJIO/b, 10 3MYIIYE iX
JEMOHCTPYBAaTH Ta MiATPUMYBATH BIACHUHU iAeani3oBaHui oOpa3 Ha Tii KibepOymiHTy, po3iajiiB
3I0pOB'sI Ta MOPYIIEHb OJIArONOoydYs, BKIItoUaroun aucmMopdodobiro, posnaau XxapuoBoi MOBETIHKH,
JITIPECHUBHI Ta TPUBOXKHI CTaHH, BU3HAYMIN HEOOX1IHICTh Haf0aHH YYHSMHU 3HAHb T4 HABUYOK, 10
JIO3BOJISIIOTh  OPIEHTYBATHCS y CBiTI, B SIKOMYy BOHHM JXHUBYTh ChOTOMHI. | JesdKi AOCTiHKEHHS
MOKa3yIOTh, IO IITYYHUH 1HTEIEKT MOKE CHPUATH BJIOCKOHAJICHHIO KOTHITUBHHX, COLIAJIBHUX Ta
EeMOLIIMHUX HaBUYOK, JO3BOJISIOYM BUKJIAJayaM IEpCOHAI3yBaTH HAaBUYAaHHSA Ta aHANI3yBaTH SK
SIKICHI, TaK 1 KUIbKICHI JJaHi, 100 OI[IHFOBATH PiBEHB BOJIOIIHHS [IMMH HABUYKAMH Ta 32 HEOOX1HOCTI
JloroMaraTy y4HsIM OCBOITH iX [6].

Kpim TOro, BueHi Ha3UBAKOTh i iHIII IPHUYUHM JJIst BUBUEHHS 1] B>ke B paHHbOMY Billi [8]:

1. 3HaHHA Ta pO3yMiHHS OCHOBHUX (DYHKIIi} IITYYHOIO IHTENEKTY Ta BUKOpucTaHHs II-noxaTkis
€ HEBII'€MHOI YaCTHHOK IM(PPOBOI TPaMOTHOCTI I BCIX TPOMAISH y Cy4aCHOMY
CYCIIIBCTBI. Y 3B'SI3KY 3 THM, 1110 MU BCTyIaeMo B enoxy I, BaxnBo 3a0e3meunT BCIM JIITIM
Ta IXHIM CIM'IM, OCOOJMBO 3 MEHII OJIATONOJIYYHHX BEpPCTB HACEJICHHS, MOJMJIMBICTh
OTPUMATH JOCTYN O HaBYaHHS LU(POBOi TPAMOTHOCTI, @ TAKOXK BHKOPUCTAHHS HU(POBHUX
TEXHOJIOT1H, BKIFOYA0UX TEXHOJIOTI] MTYIHOTO IHTEICKTY.

2. JliTaM HEoOXiHO NaTH MOXIJIMBICTb BUBYATH, BUKOPHUCTOBYBATH Ta OI[IHIOBATH IITYYHUU
IHTEJIEKT TIiJ] IUJISCIPSIMOBAHUM KEPIBHUIITBOM, OCKUIBKM BOHH HE 3MOXYTh CTaTH
rpaMoTHUMH B ramysi Il 3a momomororo BiacHOro O€3LITBHOTO JOCTIIKEHHS Y BLIBHOT
B33a€MO/Ii1 3 TEXHOJIOTISIMU UM irpamkamu, ki miarpumyroTs 11. Takwuii miaxiza, y cBoto 4epry,
CIPUSTUME IXHBOMY MIKIUCIUIUTIHAPHOMY HaBUAHHIO.

3. Hitu 3patHi po3ymitu ocHOBHI ¢yHKii I, 0cO0IMBO KOMM iM HATAIOTHCS MOXIIMBOCTI JIJIS
HaBYaHHS, L0 BIANOBIAAIOTH BIKYy Ta iX MONEPEAHbOMY JIOCBily. 3aMiCTh TOro, 100 3
HEJIOBIPOIO CTaBUTHUCS JO 3JaTHOCTI JiTed BuBYaTH II, a Takox HaB4aTtwcs 3a HOro
JIOTIOMOT 010, MTOTPiOHO TOTYBATH iX 10 PO3BUTKY BMiHHSI CTABUTHU MUTAHHS, TOCII)KYBaTH Ta
MaHINyJIIOBATH MPUCTPOSIMU 31 IITYYHUM 1HTEJIEKTOM O€311E€YHO Ta HAJIEKHUM YHHOM.

baraTto pocniHMKIB Npy aHalli31l BIUIMBY IUTYYHOTO IHTEJIEKTY Ha LIKOJSPIB HAroJOLIYIOTh
Ha T[iepeBarax, IOCWJIAIOYMCh Ha HaJaHy CHUCTEMOI0 IM(PPOBUX TEXHOJOIIH MOXIMBICTH
3aCTOCOBYBAaTM B XOJ1 HaBYaHHSA [EPCOHANI30BAaHUM IMIAX1J, IO BpaxoOBYE I1HAMBIAYaJIbHI
XapakTEepUCTUKN Yy4HIB. Y 1poMy Bunaaky Il moka3ye cBOIO CHPOMOXHICTH 0 PO3LIMPEHHS
COLI1aJIbHO-EMOIITHOTO JTOCBIAY, 1110 HAO0YyBalOTh YC1 Cy0'€KTH OCBITHIX BIJIHOCHH, MPOTE BAXKIMBO
noOynyBaTH 1€l TMpollec TaKUM YMHOM, MIO0 BiH JIaB MOXJIMBICTH OCMHUCJICHO MiTIATH 0
HaBYaJILHOTO MPOILIECY, HE TOOOIOIOUNCH Y TOH e Yyac HEraTUBHUX HACIIAKIB, SIKI MOXKE CIPUYUHUTH
c00010 BUKOPUCTaHHS JOAATKIB.

[Tpu npomMy HEOOXiJTHO Mam'sATaTH, M0 PO3BUTOK Ta €BOJIOLIS MpUTaMaHHI He Tinbku I —
KOTHITUBHI 3410HOCTI JIFOJMHU, 1110 MOCTIHO B3a€EMOJIE 31 IITYYHUM 1HTEIEKTOM, TAKOXK MPHU LIbOMY
3MIHIOIOThCS, OCKUJIBKM KOTHITHBHI Omeparlii 0e3rmocepeiHb0 3ai1exarhb BiJl CTYIEeHsS PO3BUTKY TaKHX
3M10HOCTEH, K CHPUMHSTTA, yBara, MIBHAKICT 00poOkH 1H(opMallii, maM'aTe Touo. Jleneryroun
qacTUHY (PyHKIIH poOOTH 3 iHPOPMALIIEI0 ITYYHOMY IHTEJIEKTY, JIFOJJUHA 3BLJIBHSE CBIl PO3YM BiJ
JIeSIKUX KOTHITUBHHMX OIepalliid, 0 B MPOIEC] €BOJIIOIi MOXKe MPHU3BECTH a00 10 OCIalIeHHS
JIO/ICBKOTO 1HTENIEKTY, aX 10 MOBHOI jAerpazanii, abo, HaBMakW, JO 3alOBHEHHS 3BUILHEHOTO
IHTEJIEKTYaJIbHOTO TIPOCTOPY HOBHMH, MTOKH 10 HEBiTOMUMHE 31i0HOCTsIMH [9].

OnHak MCcHUXi4Hi BIACTUBOCTI Ta MPOLIECH JIFOACHKOI MCUXIKH 3aUIIMINCS HE3MIHHUMU. | 115t
PO3BUTKY TOTO K IHTEJEKTY ILIKOJsSipaM OyAb-sIKOI TpYIHU, BiJ MEpPHIOKJIACHUKIB /10 HOHAKIB,

72



HEOOXITHO BCE-TaKM pPO3BUBATH MUCJCHHS, MaM'sTh, ysIBY, TOOTO BCi Ti BJIACTHBOCTI, SKi
3HAJOOJIATHCS IM MOTIM NPOTATroM ycboro xutts [10].

OaHMM 13 KIIOYOBMX IIMTaHb, HAa SKE J0CI HEMae€ OJHO3HAYHOI BIAMNOBIII, € Te, SK
reHepatuBHui I BrMBae Ha HaBUaHHS, a caMe, K JIOJU Ha0yBalOTh HOBHX HABHYOK, BUKOHYIOUH
3aBAaHHA. BiamoBige Ha 116 MUTAaHHS Ma€ BUPIIIAJbHE 3HAYEHHS, OCOONMHMBO B TUX cdepax, me
reHepatuBHUM 1l CXUIBHUIA 10 TOMUIIOK, Y€pe3 110 eKCIEePTU-II0AN TOBHHHI MEPEBIPATH OTPUMaHi
HUM pe3ynbTatd [11]. Y 11bOMy KOHTEKCTI ACSKI MOCTIIHWKHA TPUXOAATH 10 BHCHOBKY, IO
BiZIOyBa€THCS BUTICHEHHS! KOPUCHOI HABYAJIBbHOI Ta (Pi3MYHOI aKTMBHOCTI, TOOTO y4HI BiA4yBalOTh
IHTEJNIEKTYallbHY Ta IICUXOEMOLIWHY Hampyry y 3BSI3KYy 3 HABYQJIbHUM HAaBaHTAXXEHHSM, IO
CYMPOBOKYETHCS HU3BKOIO PYXOBOK AaKTHUBHICTIO. Be3yMOBHO, I1¢ HETaTHMBHO BIUIMBAE Ha iX
¢bi3udHe 0JaronoIy4ysi, IKe € OJJHUM 3 OCHOBHHMX aCIEKTiB IICUXIYHOTO 37I0POB'S B IIJIOMY.

MixHapoaHa TmporpamMa OLIHKH OCBITHIX JocsarHeHb YyuHiB PISA Busnauae [6]
0JIarONOJIYYHHI PO3BUTOK 3arajioM SIK «IICHXOJIOT1YHHMM, KOTHITUBHHM, COIlIaJbHUN Ta (I3UYHHMA
CTaHM Ta BIAMOBIIHI 3I0HOCT1, HEOOX1AHI YUHSM IJIs MIACTHUBOTO Ta IIOBHOI[IHHOTO XKUTTS», a CaMe:

e [lcuxosoriune OJyiaromojyyusi BKIIOYA€ IIJICCIPIMOBAHICTh Y4YHIB, CaMOCBiJIOMICTb,
3/IaTHICTh BiAYYBATH Pi3HI €MOIIil Ta eMOIIIHY CTIHKICTb.

e ComiasbHUI 6Jaromoryqdst — 1e AKiCTh COIIaJbHOTO KHUTTS YYHIB, BKIIOYAIOUN CTOCYHKH 3
YJIeHaMH CiM'l, OJTHOITKAMU Ta BUUTEIISIMH, & TAKOXK BITIYTTS MPUHAJICKHOCTI A0 MIKUTBHOL
CHUIBHOTH.

e KoruiTuBHe 6Jaromonyddsi CTOCY€ThCsS BMiHHS Y4HIB BUKOPHCTOBYBATH aKaJeMidHi 3HAHHS
Ta HaBUYKH MIDKOCOOMCTICHOTO CHUIKYBAaHHA, 1100 HaBYaTHCS MPOTATOM YCHbOTO KUTTS,
e(eKTUBHO MPALIOBATH Ta 3aMaTH aKTUBHY I'POMAISIHCHKY MO3UIIIIO.

e ®di3uyHe Onaromoyyyds — 1€ 3/IaTHICTh BECTH 3JOPOBUH CIIOCIO KHUTTS, IPYHTYIOUUCH HA
CaMOCTIHHIN OILIHII MOTpeOH Yy (i3UUHIN aKTUBHOCTI Ta XapuyBaHHI.

OTtxe, sk 0auuMO, 11i KOMIIOHEHTU OJ1aronoyyus JIIOJUHHU € BaXKJIMBUMM, BIUIMBAIOYU HE
TUIBKH Ha T€, K MU JIEMO 1 PO3BHBAEMOCS, a i oauH Ha ogHoro. OmHak, moob posidbparucs, sk 11
BIIMBAE HA MiAPOCTAI0YE TTOKOJIHHS, HacaMIepe ] BXKIIMBO 3PO3YMITH, IO PyXa€ PO3SBUTKOM JIITEH.
OueBUIHO, 110 1Ie AYXKE CKIAHHUNA MPOLEC, alle OJTHUM 13 KITFOUOBHX (DaKTOPIB € collialibHa B3a€MO/Iis
JITeN 3 IHIIMMH JIIOJIbMH, SIKI 1X OTOUYIOTh — SIK TIPaBUJIO, 11€ 0aThKH, BUMTENI Ta oqHOMTKU. Came
TOMY Ha CbOTOJIHIIIHIN IEHb B OCBITI BCe OLIbINOI 3HAUYHIOCTI HaOyBae 3a0€3MeueHHs COLIaIbHOrO
Ta €eMOLIIHHOT0 OJaronoIyyys.

OCKIiNbKH JTIOAM — COIiaNbHI ICTOTH, HaAM MOTPIOHE CHIIKYBAHHS 3 1HIIUMHU, 1[00 AOCATTH
yemixy B KUTTI. CoulajabHUM 3B'A30K 13 OTOUYHOUMMH MOJKE TOJIETIIMTU CTPEC, 3aHENOKOEHHS Ta
JIeTIpecito, MiJBUIIMTH CaMOOILIHKY, 3a0e3meunuT KoM(opT Ta pamicTh, 3amoOIrTH CaMOTHOCTI i
HaBITh 30UTBIITUTH TPUBATICTH KUTTS. MiIHI coIliaibH1 3B'I3KH, 3 OTHOTO OOKY, MAIOTh BEIHMYE3HUN
BIUIMB Ha Hallle IICUXI14He 3/I0POB'sA Ta LacTs, a 3 1HILIOTr0, 1X BIJICYTHICTh MOXE CTAHOBUTH CEPHO3HUIM
PH3HUK IS TICUXIYHOTO Ta eMoIliiHoro 3mopos's [3]. Hampukman, SnoHis — ogHa 3 HaWOUIBII
TEXHOJIOTIYHO PO3BMHEHUX KpaiH, aje MpH LbOMY PIBEHb CAaMOTyOCTB TaM OJUWH i3 HAMOUIbIINX Y
cBiTl. TexHomorii Oarato npoaymanu 3a JIOJEH, BHACIIIOK 4Oro Oarato NpoleciB y CyCHUIbCTBI
BUSIBWINCS IITYYHUMH. Y TaKUX YMOBAaX, KOJH JIIOMHA MaJIO 1110 BUPILIYE 1 3a HEl BCe CIIJIAHOBAHO
Hanepe., eMOIIii Ta MOYyTTs BIAXOATh HA APYTUH IJIaH 1 4aCcTO NPUTHIYYI0Thca. ToMy He JUBHO, 1110
y CYCIIbCTBI iICHY€ HETaTUBHA TEHCHIIIA A0 301IbIIEHHS KUIBKOCTI TAKUX 3aXBOPIOBaHb, SIK HEBPO3
YH MCUXIYHI po3iagu. TakuM YMHOM, IITYYHUH 1HTENeKT (GaKTUYHO 3JaTHUM BIUIMHYTU Ha pPiBEHb
HABITh HAIIOTO HAOIMKYOTO PO3BUTKY, a TAKOXK Ha emoliiny cdepy [10].

3Buuaiino, Il 6yB yacTHHOIO KUTTSA HiTel 3a70Bro Ao toro, sik ChatGPT craB nomynspHuM
Jaume Kinbka pokiB Tomy. Hacmpasai, I Oinbin momumpeHuil, HiK OUIBIIICTH AiT€H YW HABITh
JOpOCIUX AyMarmTh. BiAMIHHUM TpHKIaAOM € cucreMa aBTopekomeHpariin YouTube, uui II-
ITOPUTMU NPOIIOHYIOTh HACTYIIHI BiJI€O JUUIsl BITTBOPEHHS HA OCHOBI icTOPIi eperysiaiB AuTuHM. Lle
T€, 110 MO’KHA HA3BaTH MPUXOBAHUM a00 HETIOMITHUM CIIOcOO0M B3aemoii miteit 3 11 [12].

VY cydacHOMYy CBiTi 6arato XTo 3 HacC BUKOPHCTOBYE COLiaJIbHI Mepexi, Taki sk Facebook, X
(panime Twitter), Telegram, TikTok, Instagram i Tax masi, 1100 CIiJIKYBaTHCS OJHMH 3 OJHUM. X04Ya
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KOKHa 3 HMX MAa€ CBOI IepeBarv, BaXKJIMBO MaM'TaTH, 10 TaKe CIIJIKYBaHHS HIKOJIM HE 3MOXeE
3aMIHUTH pealibHi JOJAChKI BigHOocuHH. II[00 «3amycTuTw» TOPMOHH, SKi 3HIMAIOTh CTpec 1
3MYIITYIOTh BaC MOYYBATUCS IIACIUBIIIMMHE, 3JI0POBIIIIMMH Ta MTO3UTUBHIIIUMH, TTOTPIOEH 0COOMCTUI
KOHTAKT 3 1HIIUMHU JIOAbMU. TOMy, HE3BaKAIOUU HA TE, IO 1[I TEXHOJIOTIi MOKJIMKaHI 30JUKyBaTH
mrofeil, Hanro Oarato yacy, IPOBEIEHOTO0 B COILIAJbHUX MepexaX, HAacIpaBll MOXKE 3MYCHTH
MOYYBAaTUCSI CAMOTHIIIMM Ta OUIBII 130IbOBAaHUM, @ TAKOXX MOCWJIMTH TMPOOJIEMH 3 TMCUXIYHUM
3I0pPOB'sIM, TaKi SIK TPUBOXKHICTB Ta Aenpecis [3].

Ane 3 mosiBoro Il y miTeld 3'sBUBCS HOBUM TUIT B3aeMoii — 3 areHtamu II, Takumu sik Siri,
Alexa a6o ChatGPT. Tomy BUHHMKa€ BEJIMKE MATAHHS, Y4 MOXKYTh JITH OTPUMATH KOPUCTH BiJI X
B3aemoxit 3 Il TakuMm ke YMHOM, K 3 IHIIMMH JIOABMHU. Tak, HANPHUKIAI, Y JOCIIDKCHHSX,
nposeaenux npodecopom Iu Croii (Ying Su), aitu Oynu gocuts 6anaxkydi 3 I — ae e Giiblie BOHH
Oynu 3anmydeHi, KOJIM PO3MOBJUIM 3 JIIOJMHOIO, YacTille CHPSMOBYIOYM PO3MOBY, CTaBJISYU
YTOYHIOIOY1 MUTaHHS Ta JUISYUCH CBOIMU BIACHUMHU AyMKaMu. Bce 11e BaxIIKB1 €IeMEHTH, SIK1 MalOTh
BUpIIIAIIbHE 3HAUCHHS [T PO3BUTKY MOBJIEHHS [12].

ToMy 1€ OAHUM BaKJIMBUM aCIIEKTOM € Te, SIK JIITU CHPUMMAIOTh IITYYHUN 1HTEIEKT, 110
BOHHM BiJUyBalOTh, B3aEMO/IIIOUN 3 HUM. JlesKi eKCIepUMEHTH TOKa3yIOTh, IO JITH CIUIKYIOTHCS 3
Siri a6o Google Assistant, sk 3 KUBHUMH JIFOJAbMH: BOHU TOBOpUiH 3 I, sik 3 Oyab-sSKuM 3HAllOMUM,
IIKaBWJIMCSL HOTO HACTPOEM Ta OCOOMCTICTIO, KHTTSM, PO3MUTYBAIN TPO OaThKiB, OyJUHOK Ta
yno0seHi peul. Take CTaBlI€HHS 10 TOJOCOBUX MOMIYHHUKIB € JIOTIYHUM, OCKUIBKH, KOIU TUTHHA
PO3MOBJISIE 3 KUMOCH 110 TeneoHy, 1 BiAMOBigae uBa JoauHa. ToMmy Ui HEi HEOUEBUIHOIO €
pizHung Mix 11, o iMiTye nopociy JtoIMHy, Ta BJIacHe JIOAUHOO [5].

[HII1 excrieprMeHTH MOoKa3au, 110 JITH MOJIOAIIOTO BiKY (B OIHOMY €KCIIEPUMEHTI TPUPIUHI,
B iHIIOMY — 4-7 pOKiB) crioyaTKy cTaBiATbes 10 11, gk 10 moauHu, y Toi 4ac sk crapiii (6 pokiB B
oHOMY ekcriepuMeHTi 1 8-10 B iHIOMY) pO3yMiIOTh, 110, X04a IITYYHHH IHTEJIEKT MOXKE BUTIIS/IATH,
TOBOPHUTH a00 JISTH SIK JIFOJIMHA, HACTIPaBAl HOMY HE BHUCTAuya€ 3arajbHOrO >KUTTEBOTO JOCBIAY Ta
cnpaBkHbO1 emriatii [13]. BaxxauBo Takok, 110 Y4HI JOCATAIOTH YCITIXY, B3aEMOIIIOYH 3 KHUMOCH, 3
KM BOHU MOXYTb acoIlifoBaTU cede, 1 XTO, y CBOIO Yepry, MOXE acoliloBaTu cebe 3 HUMH. A
OCKIJIbKH HeBizoMo, un Moxe 11 chopmyBaTh Takuii rmrOOKuid 3B'S130K, CITiji OyTH JyKe 00epeKHUMH,
BUKOPUCTOBYIOUM HOro JAjs CHIIKYBaHHS 3 JNIThbMH. TOMy II0 po3MOBH — II€ HE NMPOCTO OOMIH
1H(popMmalii€ero, e 11e I T00yJ0Ba CTOCYHKIB, 1 11 aCHEKTH AY)KE BaXKJIUBI JJIsl PO3BUTKY AiTei [12].

[Hmmit acrekt mMosknuBoro BIUIMBY Il Ha colliadbHUIl PO3BUTOK AITEH — 1€ COIaIbHUN
€THKET, KOJIM MU TOBOPHMO <JISIKYIO», «BHOauTe» TOImO. [liTH HaBYaIOTHCS IbOMY Yepe3 B3aEMOII0
3 IHIIUMHU JIO/IBMH, SIKI MOJAEIIOIOTh COLIaIbHO MPUMHATHY MOBEIIHKY. AJle INTYYHUN 1HTENEKT He
3aBXKIH JOTPUMYETHCS HAIIUX COIIaIbHUX HOPM 200 320X0Uy€e BUKOPUCTAHHS BBIWINBOI MOBH. Tak,
Oy/no BiAMIYEHO, IIO CTaBJIIEHHS /0 TOJIOCOBOIO IMOMIYHHMKA Y JiTell BiApI3HAETHCS BiJl IXHBOI
B3aeMoii 3 fopocauMu. Yu To miarisaouun 3a 6aTbKaMu, Y4 TO OPIEHTYIOUHCH Ha BIACHUMN JOCBI/,
ajye JiTH 4acTillle BUKOPUCTOBYIOTH moao Il HakazHui TOH, Mpexd'sBisiOYM BUMOTH a00 HaBiTh
oOpakatouu ioro. Ile Bukimkae mo6oroBaHHs, 0 TaKa MOBEAIHKA MOKE IEPEHECTUCS HA B3AEMOIIIO
3 moapMu. He3Bakatoum Ha Te, IO J0Ka3iB LOTO MOKHM IO HEMa€, ICHYIOTh CBIAYEHHS, SKi
MPUITYCKAIOTh, IO JITH MOXYTh TIepeiiMaT MOBHI 3BUYKH 31 CBOiX po3MOB 3 Il Ta BUKOpHCTOBYBaTH
1€ 3r0I0M Y B3aeMOJi1 3 iHmKMHU. OHaK BCe 1Ie 10 KiHIS HEACHO, YU POOJIATH AITH 1ie 3apajau I'pH,
TOMY IIIO 1€ Beceso 1 6e3rry3/10, U 1€ BijoOpaxkae peaqbHy 3MiHY B iX moBemiHii. [eski kommaHii-
PO3pOOHHUKH BXKE 3pOOMIIM IMEBHI KPOKH, 11100 HIBEIIOBATH 1[I0 MOTEHLIHHY 3arpo3y. Hampukiarn,
Echo Dot Bi Amazon BBIB «BBIWIMBHM PEXHUM», MPHU SIKOMY, SKIIO JWTHUHA, 3aMHUTYIOUYH IIOCH,
TOBOPHUTH «Oy/b Jackay», Alexa BiIMOBIAAE «ISIKYIO, IO TaK YeMHO 3anuTanny». OHaK HaBITh TakKa,
Ha TepUINil MOIJIAa, BipHA CTpATerisi Hece, y CBOIO Uepry, 3arpo3y CTUpaHHs, 3 HOMISY JiTeH,
kopaoHiB Mixk Il Ta moapmu. [12].

Ile, y cBOrO uepry, MOXe MPU3BECTH IO CUTYaIlil, KOJH JITH AOBIPATUMYThH aJrOpUTMam
OuTBIIIe, HIXK JTFOSIM — ITpo0JieMa, sika TypOye Oaratbox JIt0JIel ChOroIH1 ur He HanObie. Tak, neski
BUMTENl TOBOPSTH, IO /s CTYAEHTIB €ce, W0 BUAAIOTBCA 3a CEKyHOU I1HCTPYMEHTaMHU
renepatuBHOTO I, Takumu sik ChatGPT, 31a10ThCs JOCKOHAMICTIO; SIKIIO KOMIM'IOTEp TaK CKa3asB,
3HAYUTb, 11€ Ma€ OyTH MPaBUIIbHA BiIMOBI/b. 3aHETIOKOEHHS BUKJIMKAE TOM (haKT, 110 KPEATUBHICTB 1
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BIIEBHEHICTh y COOl YYHIB NMPU IBOMY MOXYTh OyTH TMPHUIYIICHI, IO B KIHIEBOMY MiJACYMKY
MO3HAYUTHCS Ha IXHbOMY INCUXiyHOMY Onaromnonyudi [14]. Excneptu 3a3Ha4arorh, 1mo B y4HiB 3 11
3aBKaU OyJie CIIOKyca He lyMaTH CaMuM, a 3BepHYTHCS 3a PIllIeHHsIM 10 MaliHu. Boke 3apas Siri ta
Google Assistant MeBHOIO MipOIO 3aMIiHIOIOTh JTIiTSIM BJIaCHOPYY 3po0JeHy noMaiHio podory. Ilpu
I[bOMY BaXJIMBO PO3YMITH, IO IUTYYHHUH IHTENEKT YK€ 3JaTHUM CHpaBIsATHCA 3 JAEIKUMHU
3aBIAHHIMHM Kpallle 1 MIBHUALIE HABITh JOPOCIIOi JIIOJUHH, HE KOKY4YH BXKE IPO TUTHHY, 1 Jani el
PO3pUB, LIBULIE 32 BCE, JIMIIE 301UIbIIYyBaTUMEThCS. ToMy Bukopuctanss Il mix yac HaBuaHHA AiTel
MOYE CIIPOBOKYBATH JECTPYKTHBHE KOHKYPYBAHHS, SIK€ JIMIIE 3HU3UTh CAMOOLIIHKY LIKOJSPiB, 00O
HEMOXJIMBO Ha PIBHUX OOpPOTHCS 31 IITYYHUM IHTEJIEKTOM. CAMHHUI IUTIOC, KW OadaTh JEsKi
IICHXOJIOTH BiJ BIPOBAKEHHS IITYYHOTO 1HTENEKTY, 1€ Te, 0 KOHKypeHuis 3 1l Moxe crpustu
IParHEHHIO PO3BUBATHUCH, 1 YUHI HAMAraTUMYThCsl CTaBaTH e Kpamumu. OlHaK HaBITh IPU LbOMY
iCHy€e BenMKa HeOe3MeKa, 110 BXKe B HaHOMMKYOMy MallOyTHbOMY B HAaIlIOMY CYCIIUIBCTBI 3'SIBIATHCS
JIOPOCIT JIFOIH, K1 OyIyTh, 3 OTHOTO 0OOKY, 13 3aHM)KEHOI CAaMOOITIHKOIO, a 3 1HIIOTO, 3a1exkH] Bif 11
[10].

[HIIe mocmigKeHHs TOKa3ano, M0 MAalleHbKI JITH BBaXAJIH, M0 «PO3yMHI» KOJOHKH
HaIIHHIII, HIK JIFO/IM, KOJIM CIIpaBa CTOCYBAAcs BIAMOBIACH Ha 3alIUTaHH, 3aCHOBaHUX Ha (pakTax,
Hanpukiaj, «xto OyB mepmmm npesuneHtom CIHIA, skuii kepyBaB aBromoOinem?» [15] Onnak
HaiO11b11, MaOyTh, HEOTHO3HAYHHUH EKCTIEPUMEHT MpoBiB npodecop Hapasuan 3 [IpuHCTOHCHKOTO
yHiBepcuTeTy. HamamryBaBmm BilnmoBiZHUM 4MHOM rojocoBuit iHtepdeiic ans ChatGPT, Bin
HABYMB HOTO CIUJIKYBAaTUCS 31 CBOEIO TPUPIUHOIO NOHBKOM [16]. Hapastnan 3a3navae, mo 4ar-00T y
CBOIX BIJMOBIIAX IMITy€ CHIBUYTTS, XO04a HOro Mpo L€ CleliajJbHO HIXTO HE MPOCUB, a TOYHICTh
BIJIMIOBIJICH, CY/s1YM 3 YCHOTO, HE € IPOOJIEMOI0, OCKIJIbKY MUTAHHS TPUPIYHUX JIITEH TOCUTH TMPOCTI
Juis Heoro. He3akaroun Ha JesiKi pU3MKU TUITY MOKJIMBOI 3aJIEKHOCT] Y «ILIKIJUIMBOT0» KOHTEHTY,
3arajgoM mpogecop MO3UTUBHO OIIHIOE MOMIOHUH TOCBIJI, 3asABIISIOUH, IO OOMEKYBATH JocTyT 10 11,
K 11e 0YyJ10 13 COIliaIbHUMU MEpeKaMu, He MOTPiOHO.

Opnak mnaTdopMu collianbHUX Mepex OyIu CTBOPEHI TAKUM YHHOM, 100 MPUBEPTATH yBary
Ta yTPUMYBATH B MEpEXki J0AeH sIKHAMI0BIIE, 3MYIITYIOUH [TOCTIHHO NEPEBIPATH €KpaH Ha HAsABHICTh
OHOBJICHBb. SIK 1 TPUCTPAcCTh IO a3apTHUX Irop YW 3AJICKHICTh BiJ HIKOTHHY, alKOTOJIO YU
HapKOTHKIB, BUKOPUCTaHHS COLIIAIbHUX MEPEK MOKE BUKIMKATH ICUXOJIOTIUHY 3anexHicTb. Konu
JIOJIMHA OTPUMYE JIalK, pernocT ab0 MO3UTHUBHY PEaKIlilo Ha MyOJiKalliio, 1e MOXKe CIPUYNHUTH
BUKHJ Y MO30K JodaMiHy (XiIMIYHOI peYOBHHHU «BHHaropoam»). Te came BifgOyBaeThcs micis
BUTpally B IrpOBOMY aBTOMAaTi a00 BIJIKYIIYBaHHS LIOKOJaay. | yum Oibllle TaKMX BUHArOpoJ, TUM
OiJIbIIIe Yacy XOUYeThCsl MPOBOJUTH B COLIAIbHUX MEpeXkaX, HaBiTh SIKIIO L€ NMOYMHAE 3aBJaBaTH
IIKOAM 1HIIUM acreKTaMm Bamoro >XUTTs [3]. 3BUYaitHO, SIKIO MPOTHUIIS TaKiil CIOKYCl € BaXKOIO
3aJauero HaBiTh JUIA JOPOCIUX JIOAEH, U IiTel 1e Oy/ae HaaCKIaaHo.

3 TOro yacy, sK KUIbKa JAeCATUIITh TOMY 3'BUBCS [HTEpHET 1 coliajibHI Mepexi, 1 Jopocii, 1
JITH BCE YaCTillle CTUKAIOThCA 3 TPYAHOIAMH B OLIHII JTOCTOBIPHUX JpKepen iH(opmarlii. 3 mosBoro
IT curyamis ycknmagaunacs me Ounbine: sikmo nomyk y Google Bumae mxepena iHdopmarlii, ski
HEeoOXiHO 00po0OuTH, 1100 oTprMaTu pe3yabrat, ChatGPT 06'eqHye Ta mepepo0uiisie Bce 3a Bac, TOMyY
HEMOXJIMBO CKa3aTH, 3BIIKH OepeTbes iHbopmariis. Lle, y cBoro depry, iHOI Beie 10 TOTO, IO JIITH
BIpSTH 4aT-00TYy, HE CYMHIBAaIOUUCh Y Horo ciaoBax. TuM Oublile 110 BiH Mpe/cTaBisie iHpopMalliio B
PO3MOBHOMY CTHIIi, 0araTo B YOMY CX0’KOMY Ha T€, K CITUTKYIOTHCS JIFOJIH, 1[0 MOKE CTEPTH MEKY
MK JIFOJACBKMMHU 3HAaHHSAMH Ta KOHTEHTOM, 3T€HEpOBaHUM MammHoio [12]. V 1mpoMy BHIAAKY
BUKopucTaHHs [I MoXe cripoBOKyBaTH HeOe3euHi ekcnepuMerTr. Hanpukian, Oyiu BUTIaIKH, KOJIH
JiBYaTKa-TTITKH 3BepTanucs 10 ChatGPT 3a MmennyHuMYU OpagamMu Ta TUIaHAMH JI€TH. 3BUYANHO,
4aT-00TH MOXYTh IIBHJKO HaJaTH TaKy 1H(QOpMAIlilo, OAHAK BOHU HE MOCUIIAIOTHCS Ha OyJb-Ki
KOHKpPETH1 (TUM OUIbIII aBTOPUTETHI) JKeperna, a iX BiAMOBIJII 4acTO SBISIOTH COO0I0 BUIIAKOBHIMA
HaO1p iHdopmaii 3 IaTepuery [2].

JlocikeHHsl TOKa3yloTh, IO JITH BUKOPUCTOBYIOTH MOJIOHI CTpaTerii CyaKeHb 3 METOIO
OLIIHKM iH(opMaIlii, HaaHOi SIK JIFOJbMH, TaK 1 podoTaMu. HYacTo iXHI BUCHOBKU IPYHTYIOThCS Ha
TOMY, UM JaBaB poOOT YM JIIOJMHA TOYHY I1H(QOpMAII0 B MHHYJIOMY, Ta Ha iX CIPUHHATTI
€KCIEePTHOCTI, KOMIETEHTHOCTI JIFOJUHU YU poboTa. TuM He MeH1, Oysi0 BUSBIEHO, 110 JEsIKi TITH
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CXWJIBbHI CTINO AOBipATH Oyab-sakiil iHopmartii, mo HagaeThes I, B TOM yac sK iHII BCE K TaKH
CTaBIATHCSA JI0 Hei GibIl KpUTHYHO. MIMOBIpHO, Ha 110 31aTHICTH BIIMBAIOTH 6A30Bi 3HAHHS AUTHHU
B IIPEIMETHIM rary3i (SKIIO BOHA JAIMCHO IIOCH 3HAE PO 0OTOBOPIOBAHY TEMY), a TAKOXK 11 pO3yMiHHS
TOTO, SIK MPAILIOE ITYYHUH iHTENeKT, T00TO II-rpamothicTh (Al literacy). [locnimxenns nokasanm,
10 JITEH HaBITh Y MOMIKIILHOMY Billl MOXXHA HABYMTH I'PAMOTHOCTI Y cepi MTYUHOTO 1HTEICKTY,
110 JonoMarae iM e(heKTHBHILIE OLIHIOBATH CHJIBbHI Ta ciabki croponu LI [12].

HacnpaBni, me mo mosBu ChatGPT gesxi po3poOHHMKM TOYanud 3aMHUCIIOBATUCS Hal
CTBOPEHHSIM «JIUTSIYMX» MOMIYHHKIB, 5SKi O BiamoBiganu morpedam aitei, po3yminu ix anTasii i
BIJIIIOBIIaJTH, TIPOSIBIIIIOYH €MOIIiIHI peakiiii. SIk mpuKiiaq MOKHA HABECTH KoMiaHiro SoapBox Labs,
sKa BUKOpPHUCTaja Jisi CTBOPEHHS MOMIYHHMKA i JiTed 2-12 poKiB THUCAYI TOAMH JIUTSIYOTO
MOBJICHHS, 3alIICAHOT0 B T'aJlaciiMBiii 0OCTaHOBIII — HA KYXHSX, y KJlacax Ta MallMHax y JiTeil pi3HOro
BiKy 31 192 xpaiH [5].

Ile, y cBOO 4epry, MOpylIye BaKIWBI MUTAHHS KOHQIIEHIIMHOCTI Ta O€3MeKH JaHUX, TaK
camo SIK 1 iHIIIa paKTUKa 3acTocyBaHHs 1I, moB'si3aHa 3 AITbMU — «PO3YMHI» KaMepH y LIKOJaX, SKi
3a JOTIOMOTO0 IITYYHOT'O 1HTEJIEKTY MOKYTh BIACIIKOBYBATH MOPYIICHHS MOBEIIHKU (HAIIPUKIIA],
Oir KOpUIOpamMH), a TAKOXK 3a JIOTIOMOTO0 TICKXOEMOIIIIHHOTO aHaJli3y BU3HAYATH, YU HE MOTPEOYIOTH
JUTH TOTIOMOTY BUMTENS YU MeIuKa. J{J1s 1boro HelpoHHA Meperka MOPIBHIOE 3aKJIa/IeHi B Hel eMoIil
3 oTO/BiIE0 TaHMMU Ta aHaNi3ye BCi (aKTOPH — BiJ OLIHOK IIKOJISApa 10 HOTO moBemiHku. Kpim
1poro, I 3moxke BifcTexkyBaTH pi3Hi (hakTOpH, 110 BILUTUBAIOTH HA 37I0POB'Sl, HAPUKJIIA/, M1ABUIICHY
TEMIIepaTypy MOBITPS B KJIACi, 3a TIOTIOMOTOI0 CTIeHialbHUAX JaT4uKiB. [yt 300py Ta 00poOKH TaKoro
pony iHdopmalii Mae OyTH BiANOBIAHUIA AO3BLI, MPOTE JalieKo He (aKT, 110 KOMITaHis-pO3POOHUK
Horo 3amuTyBaTHME, a SIKIIO i Oyze, TO OTpUMae peanbHy, a He (popManbHy 3roay (TOYHO TaK camo,
AK MPU BXOJi Ha CalT MOXHA MiATBEPIUTH 10 ToOI € 18 pokiB, MPOCTO HATHCHYBIIM MOTPIOHY
KHOTIKY). [Ipy 1IbOMY BHHHKA€ TaKOX HU3KA IHIINX MMUTAHb:

e Illo pobutu, SKIO, IPUITYCTUMO, TaKHI TO3BLI HE Ja€ OJUH i3 y4HIB (a0o0 Horo OaThku) y
kJaci/mkoni? Yu 6yae MOKIMBICTh 30MpaTu JaHi Ta IPOBOAUTH aHANITUKY BUOIPKOBO?

e Sk Oyne BUKOpUCTaHO Wi JaHi Hamami? XTO, a HAWTONOBHINIE, JUIA SKUX IUIEH 3MOXKe
MpoaHaNi3yBaTH, TO CYTi, BCi TNCUXO(I310JOTIYHI ACHEKTH TOPOCIINIAHHS IUTHHH Ta
NepeTBOPEeHHH ii Ha MiJUIITKa, a MOTIM 1 Ha JOPOCITy JIOAUHY?

e [IlIBuamie 3a Bce, MUTaHHS 3roJlM Ha OOpOOKY IaHMX 3aJaBaTUMEThCS OaTbkaMm, MPOTE IO
poOuTH, SKIIO IPOTH Oy/ie cama TUTHHA?

3a TaHUMU JOCHIII)KEHb, IOBCIOJIHE BIIPOBAKEHHSI €IEKTPOHHUX Ta, BIAMOBIAHO, IUPPOBUX
pecypciB HaJla€ MepPeBaKHO HEraTUBHUM BIUIMB Ha IICUXOJIOTIYHUNA CTaH yUHIB:

1. OcoOucricHuil po3BUTOK B YMOBaX LH(PPOBOTr0 MPOCTOPY 13 3aCTOCYBAHHSIM €JIEKTPOHHHUX
MoJieJIel BiAPI3HIETCA OCOOIHUBOIO CIIEM(DiKOI0 MOPIBHSAHO 3 MepediroM JaHOTO MPOIECY B
OCBITHBOMY CEPE/IOBHIN, JI€ TEPIIOPSAHE MICIE BIIBOAUTHCS O€3MOCEepPEAHIN, «KHUBIN»
B3a€MOJI1 13 CHpPaBXHIMU NpeaMeTaMH. Y4HI MOPHUHAIOTh y CHUTYallilo, /1€ B1IOYBa€ThCA
JIOMIHYBaHHSI PAI[lOHAIbHOI CKJIAJ0BOi OCOOMCTOCTI HaJ EMOIISIMH, 1[0 CIIPHUsIE
Tpanchopmartiii mporecy KomyHikamii. [lomiOHI 3MIHEM HEpIAKO MPU3BOJAATH 1O TaKUX
HACJIAKIB: 301IbIIEHHS YKcia KOHMIIKTIB Ha PI3HUX PIBHAX B3a€MOJIIi; CXUIIBHICTD JHOAUHU
cripuiiMaTd Tojii, 1O BiOYBAIOTHCS B 11 JKUTTI, K pe3ynbTaT 30iry oOCTaBWH, IO HE
HiJTA€ThCS. KOHTPOJTIO, TOOTO MepeBakaHHs €KCTEPHAIBHOT'O JIOKYCY KOHTPOJIIO; HeOa)kaHHS
OpaTtu Ha cebe BIANOBIIANBHICTD Ta JOKJIAAATH 3yCHIIb AJISl BUPIIIEHHS] CKPYTHUX CUTYaIlii;
3aCTOCYBaHHA IIUPOKOTO CIEKTPY 3aXHCHUX IICUXOJIOTIYHMX MEXaHI3MIB; HH3bKa
aJIalTOBAHICTh /10 30BHIIIHBOI AIMCHOCTI; HEMPUHHATTS ce0e Ta OTOUYIOUHX JIFOIEH.

2. HemoxmuBicTh, IO TMPOBOKYETHCS OCOOJMBOCTSMHU EJIEKTPOHHUX (OpM HaBYaHHS,
6e3mocepeIHbO 1 MPUPOJHUM YMHOM BUPILIYBAaTH 3aBJaHHS, SKi BiIMOBIIAIOTH BIKOBOMY
eTary pO3BUTKY, a TaKOK MOTpeda y BCTAHOBJIEHHI OJU3BKUX JOBIPYMUX BITHOCHH BUKIIHUKAE
y TUX, XTO HaBYA€ThCS, INMIMOMHHUI BHYTPIIIHIA KOH(IIIKT.

3. 3ByXeHHS TOJNS [iSUTBHOCTI CHpHUs€ KOHIIGHTpAIlii 3amMTiB Ta I1HTEPECiB HABKOJIO
1H(pOopMaliifHO-KOMYHIKallIHHUX TEXHOJIOT1H, 110 HEraTUBHO MMO3HAYAETHCS HA EMOLIIHHOMY
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T y4HIB. Y 3B'I3KY 3 IMM Y Y4YHIB BUSIBIISIETBCS CKOPOYCHHS MOXKIIMBOCTEH BUPAKCHHS
BJIACHUX €MOLIIN Ta 3BY)KCHHSI CAMOBUPAXKEHHs y 3araibHOMY BUIIIAL. Lle mopomkye Benuki
poOJIeMH Yy MPOIIEC] CIIJIKYBaHHS Ta HAJArOJKEHHS MIKOCOOUCTICHUX KOHTAKTIB, a TAKOXK
CHpUsi€ BKOPIHEHHIO MOYYTTSI HE3aJJ0BOJICHOCT] BIIACHUM KUTTSM.

[Tpu 1pbOMy CTaBJIEHHS AOPOCIUX Ta AITEH 10 LBOTO MUTAHHS KapAMHAIBHO BiIPI3HAETHCA
[14]. Maitke 70% BuHMTeNiB Ta KEPIBHUKIB IIKUI/paiioHiB 3 595 onmuTyBaHHMX BBa)karoTh, 1o Il
HEraTHUBHO BIUIMHE HA MIKOJSAPIB y HaOmmkui 10 pokis, i uine 6mu3bko 15% BipaTh y T€, 110 TaKHii
BIUIMB Oyae TO3WTUBHHM. Y TOW ’k€ 4ac, 4BepTh 3 1056 miaimiTkiB, SKI NPUAHSIM y4acTh B
ONUTYBaHHI, BBaXarOTh, M0 BIUIMB Il Ha iXHe mcuxiuHe 370pOB'S Ta ONAronoayyus MPOTATOM
HACTYIHOT'O AECATWIITTS Oy/Ae MO3UTHUBHUM, a Maibke TpetuHa (31%) onuraHUX MPUITYCKAIOTh, 110
II BrimMHE HA HUX HETAaTUBHO.

Jlesiki eKCrepTH CTBEP/DKYIOTh, IO BIJIMIHHICTH B OIHII MOTEHIIHHOTO BILIMBY Il y
MIKOJISIPIB Ta BUKJIAAAYiB MOSICHIOETHCS PI3HULICIO TIOKOJIIHB: MOJOI JIFOAM MPOTIroM BCi€l icTopii
3aBkau Oynu OubIle CXWIbHI OyTH MEpIIONPOXiTHUKAMU Ta €HTY31acTaMH, IIKaBJITYNCh HOBUMH
TEXHOJIOT1SIMHU Ta MOKJIMBOCTSIMH YIOCKOHAINTH iICHYIOU1 miaxoau. [Ipu oMy BaXKJIMBO Mam'siTaTy,
1110 3 TOYKH 30py T€Opii HOKOIIHb MOBa B IAaHOMY BUIIAJIKY /i€ IEPEBAXKHO PO «aIb(u», HAPOIKEHI
micist 2010 poky (i siIkuM, BiINOBITHO, HA JaHWUH MOMEHT He Oinmbiie 14-15 pokiB). [IpencraBHUKH
IIOTO TIOKOJIIHHS BIIPI3HAIOTHCSA JIFOOOB'I0 70 irop 1 TEXHOJOTIH, a TakoX HEBMIHHSAM JIOBIO
30cepekyBartucs Ha ogHomy nuTaHHi [17]. Tomy, 30Kkpema, y MiIITKIB, SKi KUBYTh CHOTOJIHI,
nepcnekTiBa BIUMBY Il Ha ncuxiyHe 370poB's MWIBUALIE 32 BCe OLIbII ONTUMICTHYHA, OCKUIBKH
U(POBI TEXHOJIOTII B IIJIOMY Ta IITYYHUN 1HTEJEKT 30KpeMa CYIpPOBOJKYBAJIH iX BCE JKUTTS, BiJ
caMoro Hapo/keHHs. TOX HHHIIIHIA PO3BUTOK HEHPOHHHMX Mepex MoxKe OyTH A HUX JIMIIEe
YEproBUM €TaIlOM IIPOTpecy, MPUPOJHOTO PO3BUTKY [14].

[Ile 6impII 3BUMHUMH 10 HOBUX TEXHOJIOTiH OyIyTh NMpPEACTaBHUKM HACTYMHOTO 3a Anb(da
MOKOJIIHHS, HApOJKEHI, 332 JesKuMH TaHuMmu, Bke mcist 2020 poky. CroyaTky BBaXKalocs, IO
HACTYyINHE 3a «ajb(damMu» MOKOJIIHHSA 3'aBUThCA micias 2025-ro poky, IpoTe, CyAsyd 3 yCbOro, Iie
cTajocss TpoXH paHime. Ha chOromHimmHiA JeHh MOKH IO HE ICHYE €IMHOI AYMKH MpPO Te, 5K
Ha3UBAaTUMYTb IUX JIFOAeH: MOKoJiHHS C, a00 «KOPOHIaIN», 110 HAPOAUIIHCS Ta/ab0 BUPOCIH i1 Yac
naHjeMii KOpoHaBipycy; nokoiiiHHs B («0era»), ToOTO HacTymHe micis «aibday; mokomiHas W,
«1abm 10», ToOTO «IBa TeOe», OCKIIbKU BiJl HAPOJKEHHS MOro MpeJCTaBHUKU KUTHUMYTh Y JBOX
cBiTax, (i3M4HOMY 1 LK(ppoBOMYy, HE Oayauud MK HUMHU ICTOTHOI PI3HUII 1 JETKO MEpPeXOisuu 3
oJHOTO B iHImMI. OJHAaK HE BUKIMKAE CYMHIBIB, 10, siIka O Ha3Ba He MpPIDKUIACS, Il IiTH (SKi BXKe
3apa3 aKTHBHO OCBOIOIOTH JIOIIKIJIBHY IPOTpamy, a JIesKi 3 HUX, MOXKIIMBO, BXKE HACTYITHOTO POKY
HiAyTh 10 MEpIIOro kiacy) cupuitMaroTh Il sk mock 3BUYHE Ta MPUPOJHE — HEBIJ'€MHY YaCTHHY
IXHBOT'O KUTTS.

[Ipu npomy, 3a JaHMMH PI3HUX JNOCHIIKEHb (Y TOMY YHCIHI NPOBEIEHUX 3TaJaHOI0 BXKe
MIDKHApOHOIO opraHizaiieto PISA), OKa3HUKHU MIKOJSIPIB Y TAKMX OCHOBOIOJIOKHUX JUCIHMILTIHAX,
SK, HalpHUKIaJ, MaTeMaTHKa YU YUTAHHS, HEYXWIbHO 3HMXKYIOThCS B 0araTbOxX KpaiHax CBITY.
[Tpuyomy #eThCst He JIMIIE PO 3HAHHS Ta BMIHHSA SIK TakKi, ajie Mpo 3/1aTHICTh 3aCTOCOBYBATH iX y
MOBCSAK/IEHHOMY JKUTTI JUI TOCSATHEHHs pi3HUX Lte [18]. Tpenan Ha majiHHS pe3ysibTaTiB yuHIB
npunanaTs Ha 2012 pik, skuii I1esKi BUEHI BXKe HA3UBAIOTh «POKOM BHHAXO/IY CY4acHOTO CBITYY,
«BY3JIOBOIO TOUKOIO» PO3BUTKY IMBLII3allil, TOOTO MOMEHTOM 4acy, B sIKUi BiAOyI0Cs 0€37114 pi3HUX
NEePeIOMHMX MOiH, K1 BIUIMHYJIM Ha TE, B IKOMY HAIpsIMi IT0Yaja pO3BUBATUCS HAIlla [TUBLII3ALlI.
[Tpuuomy 11€ HE 0OMEXYETHCSI 3HMXKEHHSAM YCIIIIHOCTI, TaKOX MouynHarouu 3 2012 poky HiAIiTKH
CTaJIM: YacTillle BIIUyBaTH JENpPECiio, SK HACIJ0K, MOOUIbIIANO CrIpod camoryocrta; Ouiblie
CTpaXJIaTH BiJI HEJOCHIAHHS; BiUyBaTH MEHIIIE BIEBHEHOCTI y CBOIX CHJIAX; BIIYYBAaTH OLIbIIE
HE3aJJOBOJICHOCTI SIK MI0JI0 cebe, TaK 1 Bi )KUTTA 3arajioM; Biq4yBaTu ce0e aeaani cCaMOTHIIIUMH, i
tak nami [19].

IIcuxonoriyni 3MiHU CYNPOBOKYBaIMCA KyAbTypHUMHU: micist 2012 poky cama KynbTypa
cTaja OLTBII MPUTHIYEHOIO, TPUBOXKHOIO Ta 3JI00, IO BUSBIISIIOCS, HAMPUKIIA, Y TOMY, SKI IICHI
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CTaBaJM HalmomyssipHimMMU. Bce 1ie JOCmiIHUKN MOB'SI3yl0Th 3 THM, IO y 0araTbox KpaiHax
HiJTITKA MacOBO 3aMiCTh 3BHUAHUX MOOUTFHUX TeJIePOHIB MOYaId KOPUCTYBATUCSA CMAPTPOHAMH.
[lepenGaunTi MOSIBY TaKMX «BY3JIOBUX TOYOK» YKpal CKJIagHO, OLIbLIE TOrO, IX CKJIAIHO
BUSIBUTH HE JIMIIE y MAailOyTHbOMY, a i HaBiTh y MUHYJIOMY. [IpoTe Aeski ekcrepTu BxKe ChbOTO/IHI
TOBOPATH PO T€, 110 HACTYITHUM TaKUM IIEPEIIOMHUM MOMEHTOM B icTopii iroacTBa micis 2012 poky
crane 2023-1# pik.

B ocHOBHOMY IITY4YHHIH IHTENEKT BUKOPHUCTOBYETHCS JUIsl TOro, 100 3 MOro OMOMOIOIO
nrykaTH iH(opMaIliio, i e MokHa pO3TJISAaTH K 001acTh, B sKii Il Moke MaTH MO3UTHBHUIA BIUIHB
Ha JIITeH, TOMY 110 BiH 3HAYHO PO3IIMPHUB ISl HUX JOCTYI J0 3HaHb Ta iHpopMarii. OgHak BKpai
BOXIUBUM (AaKTOPOM € Te, IO JIiTH MOBHHHI MaTH MOXJIUBICTh KPUTUYHO B3a€EMOJISATH 3
iHpopMaIli€ro Ta YCBIIOMITIOBATH MOTECHIIHY MOKJIMBICTh HEBIPHOI UM HEMpaBAWBOI iHMOpMaIli.
Tomy iHII010 HEOE3MeKor0, Ky 4acTo MOoB'A3yIoTh 3 11, € Tak 3BaHi «aundelikny» - Bigeo-, ayaio- ado
dboTomarepianu, CTBOpeHi 3a fornomororo 11, Ha SKuX MOXKyTh OyTH 300pakeH1 HEICHYIOU1 UM peaibHi
moau 6e3 IXHboro no03Boiy. KpiMm Toro, mo me siBuine HeOesmeuHe came 1mo coli, BOHO TaKOoX
MOCHITIOE HeOe3IeKy KiOepOyimiHTy, a 3 PO3BHUTKOM TEXHOJOTIH I mpobsiema, HaHiMOBIpHIIIE,
noripmmtbes [14].

binpme Toro, akTHBHI «Tpoiyi» (IO, SIKI 3aiMalOTHCS COLIAJBHOIO IMPOBOKAINEID YU
3HYIIAHHIMH, TIEPEBKHO B [HTEpHETI) HE JIMIIe TepeciliyBaTUMYTh JIO/IeH, a i 3aIydaTh 10 i€l
crpaBu 1t apmii 6otiB. e B 2023 pomi 3'aBunacs indopmartist mpo Te, o JOCTITHUKA BUSBUIU B
coumianbHii Mepexxi X miry «IIBK comioxakiary». Fox8 — kmacrep 3 1140 migpobiennx
AITOPUTMIYHUX TEPCOH, IO TmpaimoTh Ha ocHOBi ChatGPT. Ixai coimpHi il BKIOYAIOTH
myOmiKaIito 300pakeHb, B3a€MHY MIIMUCKY Ha aKayHTH ISl CTBOPSHHS IUTHHOI COMIaTbHOT MEpexKi
Ta aKTUBHY B3a€EMO/IIIO 3a JOTIOMOTOIO BiAMOBiEH Ta peTBiTiB. BueHi nmpumyckaroTh, 0 00JIiKOBI
3anmucu B OOTHETI CIIAYIOTh €IWHIA WMOBIPHICHIM Mozeni, Ska BH3HA4Ya€ iX THUIHM 1 9acTOTy
aktuBHOCTI. ChatGPT BUKOpHCTOBY€ETBHCS JJIi CTBOPEHHS JIFOJUHONOJIOHOTO KOHTEHTY Yy BUIIAAL
OpUTIHAIBHUX TBITIB a00 BIANOBiNEH IHIIMM akKayHTaM, @pH I[OMYy MOBHAa MOJIENb
MPOIHCTPYKTOBAaHA F€HEPYBATH PI3HUN KOHTEHT, BKJIIOYAIOYM HETaTHUBHI Ta LIKIJIMBI KOMEHTapi.
JlocmiKeHHS TAaKOXK TMIOKa3ye CKOOPIMHOBAHE BUKOPUCTAHHS IUX OOTIB ISl MPOCYBAHHS CYMHIBHHX
BeO-caiitis [20].

Bce 1ie Moxe mpu3BecTH 70 pI3HUX HACHIAKIB. 3 OJTHOTO OOKY, MIJUIITKH MOXKYTb MepecTaTH
JOBIpATH 1H(OpMaLii, Ky oJepkytoTb. Konn BoHM 0adaTh, HACKUIBKM JIETKO CTBOPUTU TUM(EHK
(MOXJIMBO, HaBITh CHPOOYBaBIIM 3pOOUTH 1€ CAaMOCTIHHO), 1 MPU LBOMY BIJICYTHIH MEXaHI3M
HEepPEeBIPKU JIOCTOBIPHOCTI, JOBOJUTHCS CTABUTH MiJl CYMHIB aOCOJIOTHO BCE, BMHKAIOUU PEXUM
«Kpallle He MOBIPUTH, HiK OBIpUTH». IIpoTe Takuii miaxiJ BUMarae 3HaYHOr0 PO3BUTKY KPUTHUYHOTO
MUCIIEHHS, SIKe, Ha jKallb, Y 0araTboxX JII0JIell HelOCTaTHHO PO3BHHEHE, OCOOIMBO B JUTAYOMY Ta
M1JUTITKOBOMY Billl, 30KpeMa TOMY, 1110 Y HaBYAJIbHUX 3aKJIaJlaX He MPUIUISLEThCS IOCTaTHBOI yBaru
Iill Ta 1HIIUM «M'SKUM» HaBU4kaM. Tomy, 3 iHIIOro OOKy, iCHye Hebe3neka, 10 MIKOJApi OyayTh
HEe3J1aTHI MPOTUCTOATU COI[IAJIbHUM MepeXkaM 4M HaBiTh B IIJIOMY €KpaHaM CBOiX CMapT(OHIB,
KOMIT'IOTEpIB, TeJIeBi30piB Tolo. [lesiki 3 HUX y»Ke€ ChOT'0J[HI 3HAUHY YAaCTHHY 4acy «IIPUKIIEEHI» 10
CBOIX Ta/KETIB — HACTUIbKA €(EeKTHBHI alrOpUTMM CcOLlalbHUX Mepex. Hanpuknan, maiixe
nonoBruHa kopuctyBadiB TiKTOK — e miti 1o 18 pokiB, a KOHTEHT AaHOT MEpEXKi He € Hi HABYAITbHUM,
Hl PO3BUBAIOYMM. ANTOPUTMHU OyayTh BCE OLIbII BUTOHYEHHMHM Y CBOIX JISIX 13 3aXOIUJICHHS Ta
YTPUMaHHSl yBarun KOPUCTYBadyiB, $IKi, BIJMOBIAHO, Bce OiblIe 4Yacy OyAyThb INPOBOAUTH Y
BIpTYyaJIbHOMY CBITI Ta BCE CKJIQJHIIIE OPIEHTYBATUCS Y CBITI peabHOMY. OJHUM 3 (PaKTOpiB MOXKeE
OyTH Te, 110 iX B3aeMOis 3 60Tamu Oy/ie OLIbII SCKPABOIO 1 HACHYEHOIO B MOPIBHIHHI, CKaXIMO, 31
CHUIKYBaHHSIM 3 CiM'€l0 — IpUHAWMHI iM Tak 31aBaTUMeThCs [14].

Tum HE MeHmI, AesKi MOCTIDKEHHsS MOKa3ykoTh, IO JITH AIMCHO MOXYTh €()EeKTHBHO
HaBuaTucs y II, skmo BiH po3poOieHuit 3 ypaxyBaHHAM NpUHUMNIB HaBuaHHs. Hampuknax, II-
KOMITAHBHOHH, SIKi CTaBJISATH NMUTAHHS IMiJ{ YaCc TAKUX 3aHATh, SK YATAHHS, MOXYThb IMOKPAIIATH
PO3YMIHHS JiTe Ta iX CIOBHUKOBUII 3arnac. BoHU iMITYIOTh pOjib OaThbKiB, YUTAIOUHU 1CTOPIiIO BIOJIOC
1 pobistun maysu, o0 cnutatu: «I1{o BimuyBae et mepconax?», abo «Sk T mymaern, 0 CTAaHETHCS
nani?». BucnyxaBimm BiAMOBib, IITyYHUN IHTENEKT Ja€ HEBENUKI MiJIKa3KH, SK 1€ 3poOuB Ou

78



BUXOBAaTEJIb YM BUUTENb, AKOM TUTHHI Oyia motpiOHa momomora. JliTu, ki Opain ydacTh y TAKOMY
TUII IHTEepaKTUBHOTO Aiajory 3 I, kpaie po3yminu icTopii Ta Bri3HaBanu OUIbIIE CIIiB Y MOPIBHAHHI
3 TUMM, XTO IIPOCTO [TACUBHO CIIyXaB. A B IeSIKUX BUIA/IKaX pe3yJabTaT HaBYaHHS BiJ B3aeMozii 3 11
OyJIM HaBiTh CHIBCTaBHI 3 pe3ylbTaTaMu BiJ JIOJCHKOT B3aemoii. OnHak, xoua Il Moxe imiTyBaTn
JIesiKl OCBITHI B3a€MOJIii, BIH HE 3JaTHUH TOBHICTIO BIIITBOPUTH OUIBII TIMOOKE 3alydyeHHs Ta
noOy/J0BY BIJHOCHH, SIKIi BUHUKAIOTh MpPH JIIOJACHKIM B3aeMoJil, 0COOIMBO KOJNM WIAETHCS MPO
HACTYIHI MUTaHHS a00 MePCOHANI30BaH1 0€Ciin, sIK1 BaYKJIMBI 1711 MOBHOTO Ta COIIAJIbHOTO PO3BUTKY
mitent [12].

B excnepumenrti, cnpsimoBaHoMy Ha Bu3HaueHHs edexrtuBHocTi ChatGPT y BuBUeHHI
AHTJTIMCbKOI MOBH, OyN0 BHUSBIIEHO, IO BiH 3arajoM YCIIIIHO CIPABISETHCS 3 TPaMaTHYHUMH Ta
JEKCUYHUMM BIIpaBaMM, MOYXKE JIOMOMOITH IIKOJSpaM IOYaTKOBOTO PIBHA 3 UYUTAHHAM, ajle y
3aBIAHHSX JUIS YYHIB CTApIIO] HIKOJHM YaCTO MPHUIYCKAEThes MOMIIIOK. I[o crocyeTbest poHETHKH,
TO 4aT-00T MOK€E JTOIIOMOI'TH 3 TPAHCKPUIILIIEL0, aJle 3 OLIbII CKJIAAHUMU 3aBJaHHAMM, HAIIPUKIIA] Ha
TpyIyBaHHS 3BYKiB, BiH MIOKH IO CIIPABIISETHCS MEHII €()EKTHBHO.

[lono 3ragyBaHOi Bk MaTeMaTHKH, TO TYT CUTYallis 30BCiM iHIIa. HoBa Mozaenb mTy4yHOro
iaTenekTy Bim OpenAl, ol, oTpumMana ineasbHUI pe3ynpTaT y iCOUTI 3 MaTeMaTHKH. JlociiaHuKN
Ha/laJIM 3aBJIaHHs, SIK1 BUITYCKHUKHU CepeHIX UKL ['oyutanmii 34at0Th Ui BCTYIY 10 YHIBEPCHUTETY,
mozeni ol preview (1l HaBITH HE «IIOBHa» MOJIENb), sika 3a 10 XBHJIMH MPaBWIIBHO BHpIIINIA BCi
3aBlaHHs, HaOpaBmu 76 OamiB 13 76. Jlnsa mopiBHAHHA, qumie 24 yyHi 13 16414 (To6TO O1IM3BKO
0,15%), siKi ckJIagayv el ICIUT, TaKOK OTPUMaTH MakcuMalbHUH 6amn [10].

3 oamHoro Ooky, ©Oararo XTo HaTxHeHHMH THM, 10 Il Moxke 3poOuTH HaBYAaHHS
NEPCOHATI30BAHUM Ta JOMOMOITH YYHSM PO3BHHYTHM HABUYKH, HEOOXimHI /uis TOro, 100 OyTh
VCHIIIHUM Y CYYacHHX yMOBax (sKi Temep BKJIIOYAIOTh 1 BMIHHS B3a€EMOMISTH 31 WITYYHHM
iHTeNeKTOM). 3 IHIIOTO OOKY, ICHYIOTh MOOOIOBAaHHS 3 MPUBOAY MEPCHEKTHB IBOTO «ITOKOTIHHS 11,
iX 3MaTHOCTI OIMCHO 3HAXOAMTH BIAMOBIAL 1 BUMTHCS caMoOcCTiiiHO [12]. IcHYIOTh JOCHUTH Baromi
JIOKa3W TOTO, IO JOCTYI J0 IHCTpyMEHTIB Il MOXe MOKpamuTH BUKOHAHHS 3aBJaHb YYHSIMH,
HANPUKJIAJ, TIPU HAMHUCaHHI ece y4Hi, ki BukopucToByBamu ChatGPT B skocTi momiyHHKa, SIK
NpaBUJIO, NUCAIHM OUIbII sKicHI ece. OMHAK MUTaHHS TYT y TOMY, Y4 MOXYTh Y4YHI, K 1 paHimie,
MUCaTH SKICHIII ece, KoM BOHM Oijblie He MatoTh AocTyny 10 ChatGPT.

[I{o6 mepeBipuTH 11€, TPOBEIM HACTYMHUM ekcriepuMeHT. bimspko 1000 yunis 9-11 kaciB B
OJIHIN TypeubKiil KOl B paMKaXx BUBYEHHS MaTeMaTWKHU OylW MOAICHI HAa TPU TPYHH: OJHI
BUKOpHCcTOBYBanu 3Bu4aiiHy Bepcito ChatGPT (tak 3Bana GPT Base), i — GPT Tutor, sikuii Oys
3amporpaMoOBaHUil JaBaTH OJHY a0 KiJlbKa MpaBMWIIBHUX MiAKA30K, ajie HEe caMi BIAMOBIiJ, a TPETs
(KOHTpOJIBHA) TPYIIa MpalroBaia sk 3apxau, 6e3 L. Pesynbratu exciepumMeHTy mokasainu, o npu
BUPILLICHHI MPAaKTUYHUX MaTeMaTuYHuX 3aBaHb GPT Base Ta GPT Tutor 3611b11y10Th €(heKTUBHICTD
Ha 48% Ta 127% BiAMOBIAHO MOPIBHAHO 3 KOHTPOIBHOIO Tpymoto. OHAK J0AaTKOBO OYIIO BUSBIICHO,
10 Ha ICNIMTI, HiJ Yac SKOr0 HE MOXKHAa OYyJIO KOPHUCTYBAaTHUCS €JNEeKTPOHHUMH IOMIYHUKAMH,
pe3yNbTaTu y4uHIB 3 Nepioi rpymnu, siki BukopucroByBaiu GPT Base, BusiBunucs Ha 17% ripmumuy,
HIXK Y TUX, XTO BXOJIMB /10 KOHTPOJIHOI I'pyIH Ta He KopucTyBaBcs I Bech yac Hapuanus. [Ipu ibomy
pe3yNbTaTH TpyIy, 1o BukopuctoByBasia GPT Tutor, craTucTHYHO Maiike He BiIPI3HSIIUCS BiJ THX,
XTO BUPILIYBaB Bce caMOCTiiiHO. TakuM 4uHOM, MU 6a4MMO, 10 X04a MOAI0HI IHCTPYMEHTH MOXYTh
CYTTEBO MOKPAIIUTH MPOAYKTUBHICTh JIOAMHU 32 HasBHOCTI JocTynmy 10 II-iHCTpyMeHTIB, BOHU
TaKOX MOKYTh TOTIPIIUTH JIOACHKE HAaBYaHHsS (OCOOJHMBO 3a BiJICYTHOCTI BiAMOBIAHHUX 3aXOJIiB
0e3MeKu), Mo MOXE MaTH JIOBFOCTPOKOBI HACTIAKU ISl MPOAYKTHBHOCTI JtonuHu. KpiMm Toro,
nociiHuky BusiBiiM, mo GPT Base naBaB mpaBuiibHY BIANOBIIb B CEpeIHbOMY TUIbKH B 51%
BUIAJIKIB: BiH MPHUITYCKaBCS JOTTYHUX NOMUIIOK Yy 42% BUMNAAKIB 1 apupMEeTUUHUX MOMUIIOK Yy 8%
Bunajkis. [Ipu npoMmy, 3Bakaroun Ha Bce, HaBiTh Monau¢ikoBaHa Bepcisi ChatGPT He cuibHO
MOKpAIIlye CUTYallil0, OCKUIbKM OUIBIIICTh YYHIB Hamaramaucsi npocto oTpumartu Binx II rorosi
BIJIMIOBI/Ii, HE PO3BUBAIOYM IIPU I[bOMY BJacHi HaBUUKH [11].

TakuMm 4YMHOM, HE3Ba)KalOYM Ha HHU3KY IepeBar MOBCIOJHOIO 3aCTOCYBAaHHS ITYYHOTO
IHTENIEKTY B TPAKTHUIIl IIKUIBHOI Ta JOMIKUIBHOI OCBITH, TaKMX $IK MOJJIMBICTH 3a0€3MEYUTH
IHAUBIAYaTbHUN MIIX1A 0 HaBYaHHS a00 BIPOBAIKEHHS CUCTEM MPOKTOPUHTY, 11€ TAKOK HEraTUBHO
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BIUTMBA€ HE TUTBKM Ha Pe3yNIbTaTH HABUAHHS, a ¥ Ha 3JaTHICTh AITeH HAaBYATHCS, a TAKOXK Ha iX
PO3BHUTOK Ta OJIArOMOTYYUsl.

BucnoBku. Koxxaa HoBalliss — Big TesnebaueHHs IO COLIATbHUX MEPEX — Hece B coOi K
nepeBary, Tak 1 HeIoJIiKU. 3BUYAHO, caMa 1o co01 TEXHOJIOTIS He € aHi XOPOIIOk0, aH1 MMOTaHo¥0, BCS
CIpaBa B TOMY, XTO 1 IKHM YAHOM ii BAKOPHCTOBYE — 1 B TIEPIIY Yepry T€, Y4 BUKOPUCTOBYE JIFOIUHA
ii ycBimomiieHo, a00 K IIs1 TEXHOJIOTIS MiAMOPSIIKOBYE 1 IIOYMHAE BUKOPUCTOBYBATH ii camy. | xoua
MU MOXEMO Tepea0auuTH ekl 3 IUX e(EeKTiB, IHIIUM MOTPiOHI POKH, MO0 BUABUTHCA. Tomy,
BpPaxOBYIOYM [MOJBIMHY TIPUPONY TEXHOJOTiH, Hemepen0avyeHi HACHIAKA Ta CKIAIHICTh
NPOTHO3YBaHHS TPAEKTOPIi IXHBOTO BIUIMBY HABITh CAMHMH pPO3POOHUKAMH, BKJIMBO HABUYHTHCS
nepeadavaTi Ta yCyBaTy MOTSHLIWHI HETraTUBHI HACTIAKH y Mipy TOTO, SIK HOB1 iHCTPYMEHTH ILIUPOKO
BIIPOBA/KYIOTHCS y HAIIlE TIOBCSKICHHE YKHUTTSI.

I[Ipu upomy nyxke nomupeHe (i aKTUBHO HaB'A3yBaHE) Yy CyYaCHOMY CBITI SIBHUINE
Oararo3asayHocTi Oe3Mocepe/lHbO TOB'S3aHE 3 IMIJIBHIICHOI TPUBOXKHICTIO, 1MITYJIbCUBHICTIO,
O3HAKaMH JICTIPECHBHOTO PO3JIaJly Ta HEBPOTH3MOM 3 XapaKTEPHOK EMOIIHHOI HECTaOUIbHICTIO,
BIJICYTHICTIO CaMOIIOBaru, a iHOA1 1 BEreTaTUBHUMH PO3J1alaMH. 3 IIbOTO BUILIMBAE, 10 TisSITLHOCTh
Ha yMOBax 0aratro3aJaqHocTi (3a3BUYail 3 METOIO IMiBUIIECHHS €(EKTHBHOCTI Ta PE3YyIbTaTHBHOCTI)
BeJle 10 TOTIPIICHHS KOTHITUBHUX 3/110HOCTEH, 3HMKYIOUM MPOAYKTUBHICTH (DYHKI[IOHYBAaHHS
nam'sTi Ta yBaru. lle kapAauwHAIBHO BIApPi3HSAE MO30K JIIOJUHHM BiJl OCOOJHMBOCTEH oOpraHizaiii
u(GpOBUX MPUCTPOIB, 3JaTHUX OOpPOONATH 3HAYHI OOCSITH JaHUX Ta BUKOHYBAaTH Oe€3mid
pi3HOMaHITHUX (YHKIINA OJJHOYACHO, y 3B'I3KY 3 YAM BUHUKAE HU3KA MPOTHPIY:

1. Tlorpeba cycninbcTBa, 0 O€3MepepBHO 30UIBIIYETHCS, Y BACOKOKBATI(PIKOBAHUX Kaapax, M0
B3a€EMOJIIOTh 3 iH(OPMAIiITHO-KOMYHIKAIIIHHUMHU TexXHoJorisMA. Lle CympoBOMIKYy€ETHCS
IIUPOKUM KOJIOM HEBHUPIIICHUX IICHUXOJOTIYHUX MpoOJIeM, sIKi 3'BISIOTBCA B  XOA1
IHTEHCUBHOTO 3aHYPEHHSI YYHIB Y IIU(PPOBE CEPEIOBHIIIC.

2. 3017bIIEeHHS TEXHOJOTIYHOTO HaBaHTAXEHHA B HAaBYAJIbHHUX 3aKiIajax 13 CyMyTHIMH HoMy
HEBHCOKMMH TIOKa3HUKaMU HaBYAJbHOI PE3ylIbTaTUBHOCTI, IO HETaTHBHO BIUIMBAE HA
CaMOIIOYYTTS YYHIB.

3. HasBHICTHP B y4YacCHHKIB OCBITHBOTO TIpolecy (PiKCOBaHUX YSBJIECHb MIOZO JO3BOJECHOTO
00csTy, TEMIOBUX XapaKTEPUCTHUK Ta IHIIMX 0COOIMBOCTEN pOoOOTH B IU(POBOMY NPOCTOPI,
SIK1 HE BIJIMOBIAIOTH TIMCHUM TICUXOJIOTTYHUM TEXHOJIOTISIM, 10 CIIPSMOBaHI Ha 3MEHIICHHS
HEraTUBHMX HACHIJIKIB LM(POBUX MPUCTPOIB.

Konu My 1ymMaemo mpo BIUIMB LIbOTO Ha JAITEH, BaXJIMBO MaM'STaTd, 10 BOHU ICHYIOTH Y
MeBHiM exocucTemi. € 6araro YNHHHKIB, K1 MOKYTh JOTIOMOTTH YH, HABIAKH, 3aBAJIUTH IM BUUTHUCS
Ta PO3BUBATHCS, 1 TEXHOJIOTI] € JInIIe oAHUM 3 HUX. OfHa i Ta cama TeneBi3iliHa mporpaMa MaTUMe
pi3HUM BIUMB Ha AiTed. | 1HOMI 1€ 3aiexaTuMe BijJ TOTO, YW CHUIUTH TMOPS 3 TUTUHOO WIEH CIM'T,
SKMH JOMOMarae 3acBOIOBAaTH Ta PO3YMITH T€, YOI'O HABUYAIOTh y mporpami. ToMy, SIKIIIO TOBOPUTH
PO BUKOPUCTAHHS IITYYHOTO 1HTEJEKTY Il HaBYaHHs J1TeH, BIH Mae OyTHU po3poOiIeHHUM y ToMy
YHCI AJI 3a0X0YESHHSI IIOJICHKUX 3B'A3KIB. SIKIIO BiH HE TUTLKH HAJA€ MiJKa3Ku JITIM, a i miaka3ye
0arbkaM, 100 BOHW 3AJIMIIATKCS 3aTy4eHHMH 110 OOTOBOpPEHHS 3 iX IUTHHOIO, L€ MiATPUMYE
PO3BHUTOK MOBH Y JiTeH 1 3MIIHIOE CIMEIHI 3B'SI3KH Yepe3 CHUIbHI 3aHATTS.

[IpoTte muTaHHs TOrO, AKi 3MiHM BUKIMKae Il y niTeil — y KOTHITUBHOMY, IICUXOJIOTIYHOMY,
COIIAIbHOMY Ta HaBiTh (DI3UYHOMY TUTAHAX — 3AJMIIAETHCS MAJIOJOCIIKEHUM, a TOMY HACIIiJIKH
HOro 3acToCyBaHHS BYMTEISIMM, OaTbKaMM YM CaMHUMM JIiTbMH, SK 1 paHille, MNPaKTHYHO
HenependauyBaHi. MoXIIMBO, y MallOyTHROMY CUTYyallisl 3MIHUTBCS, IPOTE HA CHOTOJIHINIHIN J€Hb
Ha/aHi IITYYHUM IHTEJIEKTOM Y KOPOTKOCTPOKOBIM IEPCIEKTHUBI 3pYYHOCTI THIy 3MEHIICHHS
YacOBUX BUTpAT Ta MIJBUIICHHS €(PEKTUBHOCTI 0araro B 4OMY HIBEJIIOIOTHCS JOBTOCTPOKOBHUMH
HaCIiAKaMH y BUIIIAI edopMallii iHTENIeKTy He JIUIIe y AiTeH, a i y JOPOCIIMX JI0/IeH, 10 3pEITO0
3 BEJIMKOIO HMOBIPHICTIO MPU3BEAE 10 Aerpajalii IesKUX KOTHITUBHUX JIIOJCHKUX (PYHKIIH 1, 5K
HacHi0K, 3anexHocTi Bix LI, sskomy mi ¢pyHKIil Oyau nepeaHi.
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KoBaaeBcbkuii C.B. ([Jonbacvra oepocasna mawunodydisna akademis, mm. Kpamamopcok -
Tepnonins, Yrpaina), Koznos C.J1. (Binnuyvkuii HayionaneHuti mexHiuHuil yHigepcumem, M.
Binnuysa, Yxpaina)

3ACTOCYBAHHSA JIM®Y3HUX MO/JIEJIEHM 1O BUPIIIEHHS 3AJIAY SUPER-
RESOLUTION

Anomayin: Poboma npuceiauena 3acmocy8anuio Ou@ysHux moodenetli 015 SUpiWeHHA 3a0ayi NiO8ULYeHHs
PO30iNbHOI 30amuocmi 300padicenv (super-resolution), siKka € 0OHIEIO 3 KIOUOGUX NPOOLEM KOMN TOMEPHO20 30DY.
Pozenanymo npunyunu pob6omu ou@ysnux mooenet, 3aCHOBAHUX HA 080X 63AEMONOB SA3AHUX NPOYECAX: 000UBAHHS ULYMY
(forward process) ma tioco nocmynosozo eudarenns (reverse process). Iloxasamno, wo oughysui mooeni € yHieepcarbHuM
iHCmpymenmom Ons Ni0GUUEHH MOYHOCMI MOHIMOPUHSY, ONMUMI3AYIi cucmem A8MOMAMUYHO20 PO3NI3HABAHH MA
CMBOPEHHS PEANiCIMUYHUX CYEHAPII8 01l MPeHy8anb, Wo 003605€ ix eqheKmuUHO UKOPUCOBYEAMU 3 PISHUMU MUNAMU
Odanux i po3dinbHocmamu, 3a0e3neyyody Cmanull po38UmMoK MexHOI02Il Y 2any3saX 000POHU, MeOUYUHU, NPOMUCTIOBOCHLE
ma Kibepbesnexu. Bukopucmantsa yux mooeseti NPONOHYEMbCA AK 8ANCIUBUL KOMNOHEHM CYYdcHoi cmpamezii 00pobKu
8I3YAIbHUX OAHUX, OPIEHMOBAHOI HA BUKIUKU PEdbHO20 C8INY.

Knruosi cnosa: ougysui mooeni, super-resolution, niosuujenns po30inoHoi 30amHocmi, Komn romepHuil 3ip,
CMmoxacmuyHi npoyecu, 2iuboKe HA8UAHHS.

Abstract: The paper is devoted to the application of diffusion models for solving the super-resolution task, which
is one of the key challenges in computer vision. The principles of diffusion models based on two interrelated processes —
noise addition (forward process) and its gradual removal (reverse process) — are discussed. It is shown that diffusion
models serve as a universal tool for enhancing monitoring accuracy, optimizing automated recognition systems, and
creating realistic training scenarios. These models can be effectively applied to various types of data and resolutions,
ensuring the sustainable development of technologies in defense, medicine, industry, and cybersecurity. The use of
diffusion models is proposed as a vital component of modern visual data processing strategies designed to address real-
world challenges.

Keywords: diffusion models, super-resolution, resolution enhancement, computer vision, stochastic processes,
deep learning.

Beryn.

Super-resolution (SR), abo 3a1a4a miABUINEHHS PO3AITBHOT 3AaTHOCTI, € OJHIEIO 3 KITFOYOBHX
po6IeM KOMIT FOTEPHOTO 30py. [i CYTHICTh MOJIArae y BiJHOBJIEHHI BUCOKOSKICHOTO 300paKeHHs 3
HU3BKOSIKICHOTO, III0 Ma€ BEIIMKE 3HAYCHHS I TaKUX Tally3ed, sSK MEIHINHA, CIOCTEPEKEHHS,
BiJIeOQHAJIITHKA, a TaKOXK OOpoOKa CyNMyTHHKOBUX JaHUX. Y CydacHHMX Mifxonax a0 SR ocHOBHa
yBara NpuauIsiETbCcsl METOaM INIMOOKOT0 HaBYaHHS, CEpel] AKUX OKpeMe Miclle 3aiiMatoTh AUQY3HI
mozeni [1]. BoHn € mepcreKTHBHUM IHCTPYMEHTOM, IO BUKOPHCTOBYE CTOXACTHYHI MPOLECH IS
MOJIETIOBAHHS 3aJIEKHOCTEH MiX TIKCEIIMHU 300pakeHHs. [X iHHOBAIiHHICTh MOMATae y 3aTHOCTI
MOCTYNOBO BIJIHOBJIIOBATH BTpaueHi JieTalli 300pakeHHS MLUISXOM IPOXO/UKEHHS 3BOPOTHOIO
nporecy 0 3alryMJeHHS. 3aBASKH IIbOMY BOHH JIOCSTAlOTh BHUCOKOTO PIBHA TOYHOCTI TpH
BIJTHOBJICHHI CKJIaTHUX TEKCTYp 1 CTPYKTYp.

Judy3Hi Mozaeni peanizyloTh MPUHLKI BUKOPUCTAHHS JBOX B3a€MOIIOB’S3aHMX MPOIIECIB:
npsMoro Ta 38opotHoro. Ilpsimuii npouec (forward process) nonsrae y noctynoBomy A0JaBaHHI
raycciBCbKoro mymy 10 300paxkeHHs. [IpoTsrom KigbKoX iTepariii 300pakeHHsI BTpayae CBOL
MIOYaTKOBI PUCH Ta MEPETBOPIOETHCS HA BUMAIKOBHH mIyM. DPopMaIbHO Lei Ipoliec OMUCY€EThCS K
CTOXaCTHYHHUH, J€ Ha KOXXHOMY KpOIl JOJA€TbCs HEBEIMKAa KUIbKICTh IIyMy. Y pe3ynbTarti
(bopMyeTbCa JIATEHTHUH MPOCTIp, M0 MICTUTh PO3MOAUT AaHuX y ¢opmi mymy. Ha erami
3BOPOTHBOI0 Tpouecy (reverse process) MOJEIb HAaBYAETHCS IOCTYNOBO BHAAIATH UIyM,
pyXar4uch y 3BOPOTHOMY HamnpsiMKy. KoxeH Kpok 3BOPOTHOIO MpOIECY BiJHOBIIOE Bce OLIbIIe
JeTajgeil Mo4aTkoBOro 300paXkeHHA. BHKOPHCTOBYIOUM TOINEPEIHbO 3T€HEPOBaHY MOCIIIOBHICTD
IIyMY Ta BUBUCHUM PO3IOALT JAHUX, MOJIETh 3/JaTHA BITHOBUTH BHCOKOSIKICHE 300pasKeHHS.

L1i 1Ba mpolecu € MaTeMaTHYHO 3B’ 3aHUMH, 110 3a0e3euye CTablIbHICTD 1 MOCIII0OBHICTD Y
BIJTHOBJIEHH1 JaHuX. HaBuanHs nudy3sHux Moenei Bif0yBaeThCs MUISIXOM ONTUMI3allli HMOBIPHOCTI
3BOPOTHOTO MpOIECY, IO J03BOJIIE TOYHO MOJICNIOBATH PO3MOALT TOYATKOBUX JaHUX. Y
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3aCTOCYBaHHI JI0 super-resolution audy3Hi MOAEN JEMOHCTPYIOTh YHIKaJIbHI MOKJIUBOCTI. BoHuU
aJaNnTyIOTHCS 10 crenudiku 3a1adi 3a JOMOMOTOIO 1HiIiami3allii, yMOBHOI reHepailii, iTepaTUBHOTO
nokpaiieHHs. [ToyaTkoBUM BX1AHUM 300pakK€HHSM JJ1s1 3BOPOTHOTO MPOLIECY € HU3bKOSAKICHA BEpCis,
sKa MiJIa€ThCS IHTEPIIOIALIT 0 OakaHOTO po3Mipy. TakuM YMHOM, MOJIENIb OTPUMYE OPIEHTUD LIS
BIJIHOBJICHHS BTpaueHUx jaeTaned. Ha erami ymoBHOI reHepamii audy3Hi MoJeli I0Ial0Th IO
MPOIIECY BiTHOBIICHHS I0IATKOBY YMOBY — HU3BKOSIKiCHE 300paxkeHHs. L{e 3a0e3mneuye KOpeKTHICTh
BIJIHOBJICHHS 1 Y3TO/UKEHICTh MIXK TIOYATKOBHM 1 KiHIIEBUM 300paxkeHHsM. KokHa iteparis
3BOPOTHOTO MPOLIECY Ha €Talll ITepaTuiHOro NOKapaleHHs (CTBOPEHHS FTeHePaTUBHOI MOJIEINi) JI0AA€e
Bce Ol/Iblle BUCOKOYACTOTHMX KOMIIOHEHTIB, IO J03BOJIAE MOCTYIOBO BIAHOBIIOBATU T€ CKJIAJHI
TEKCTYpPH, SIKi BaXKKO BIATBOPHUTH 32 IOTIOMOTO0 3BUYAHUX METO/IIB.

Tpaauuiiini meroau, Taki Ak OikyOiuna abo OicraiiHOBa IHTEPHOJALIS, MOXYTh
BiJTHOBJIIOBATH 300pa)KEHHS, O/IHAK IX pE3yJabTaTH YacTO CTPAXKIAIOTh HA PO3MUTICTH 1 BIICYTHICTh
BHCOKOYACTOTHHX JeTanei [2]. Y Toi 4vac sk OUIbII Cy4acHI MiAXOJW, TaKli SK T€HEPaTUBHO-
3maranbHi Mepexi (GAN), MOXYTh CTBOPIOBATH J€Talli, BOHM I1HOZAI NOJAIOTh apTe(akTH, 1o
3HIDKYIOTh TPUPOAHICTh 300paxkeHHs [3]. JAudy3ni moxem miaxomate mo 3amadi SR 3 iHImo1
NEPCIEKTHBH. BUKOPUCTOBYIOUM CTOXAaCTUYHHMU 3BOPOTHHUI IMpPOIEC BiAHOBJICHHS, BOHH JOAAIOThH
HEOOX1/IHy JeTali3alliio MOCTYIOBO, 30epiralouu CTPyKTypy ¥ TEKCTypH, BIACTHBI OpPHUTiHATHHUM
300pakeHHM. 3aBJISKH I[bOMY iX PE3yJIbTaTH MAlOTh BUCOKY SKICTb, sIKa MEpPEeBEpIIye 06araTo iHIIMX
METO/IIB.

besymoBHOIO mepeBaroro au(dy3HUX MOJEIEeH € BHUCOKAa AaJalTHUBHICTh, $Ka JIO3BOJISIE
3aCTOCOBYBATH iX IO PI3HMX THUIIB JJaHUX Ta po3AlIbHOCTeH. Hampukiiaa, BOHH MOXYTb OJIHAaKOBO
epexktuBHO mpamoBaTH 3 (Qotorpadismu, memuuammu 3HiMKamu (MPT, KT) abo HaBith
CYIyTHUKOBUMH 300pakeHHAMHU. Lle gocsiraeTbcs 3aBASKM  yHIBEPCAIbHOMY  MPHHLHUITY
CTOXAaCTUYHOTO IMPOIEeCy, KOJM MOJeNi TPAIIOIOTh 13 IIUPOKUM CHEKTPOM BXIJIHHUX JaHHX,
MOCTYIOBO BiJIHOBIIIOIOYH MOTPIOHY SKICTh Ha OCHOBI 6a3zoBoro mymy. KpiMm Toro, audysni moaeni
JIETKO MacTaOyrOThCs I 3a/1a4 13 pi3HUMH po3aiTbHOCTAME. udy3Hi Moenni MaloTh YHIKAJIbHY
3/IaTHICTh MpPALIOBaTH 31 CKJIAJHUMHU W HETMIHIWHUMHU PO3MOIiIAMHU, SKi 4acTO 3yCTPiUaloThCs Y
OpUpOAHUX JaHuX. lle JocsraeTbcs 3aBHSKM ITEPAaTUBHOMY XapaKTepy IXHBOTO 3BOPOTHOTO
npoliecy, KOJu MoJieNli TOYMHAKOTH 3 J0JaBaHHA IIYMY 10 300pakeHHs, 10 (pakTUyHO "po3unHse"
OpUTIHAJIbHI CTPYKTYpPU B XaOTH4YHOMY po3noniai. IloTiM, y Xoai 3BOpOTHOro mpolecy, BOHU
MOCTYNOBO BiJHOBIIOIOTh 300paXK€HHS, BHUKOPHUCTOBYIOUM 1H(pOpMaIlilo, OTPUMaHy IIiJ] Yac
HaBuaHHA. Lleit miaxin no3Bossie nudy3HUM MOEsIM "BIOBIIOBATU" CKJIaJHI TEKCTYPH, K1 BAXKKO
BIATBOPUTU IHIIMMM MeTonaMHu. EdexTuBHicTs Iudy3HHX Mojenei y BHpIIIEHHI 3ajadi
CYNEepPO3IbHOI 3aTHOCTI MPOMOHYETHCS OLIHIOBATH 3a JOTIOMOTOK KOMITJIEKCHOTO MIAXOAY, 110
BKIItoyae 00’exTuBHI MeTpuku (PSNR mms Tounocti ta SSIM Ui CTpYKTYypHOI CXOXOCTI) 1
Cy0’€KTUBHY BI3yaJIbHY OIIHKY, K1 pPa30M JI03BOJISIIOTh BpaxyBaTH TOUHICTb, CTPYKTYPHY CXOXKICTb
1 CIPUMHATTSA SIKOCTI BiHOBJIEHUX 300pakeHb [4].

Judy3Hi Moaesni MatoTh 3HAYHUHN MOTEHLIaN /Ul 3aCTOCYBaHHS Y BiIICbKOBIH cdepi, 30kpema
JUISL pO3B’sI3aHHS 3aa4 MIJBUIIEHHS pO3UIbHOI 31aTHOCTI 300paXkeHsb (super-resolution) B yMoBax,
KOJIM TOYHICTb 1 JeTani3alis € KpUTUYHO BAXKIMBUMU. 30KpeMa, 3aCTOCYBaHHs AUDY3HUX Mojeneit
y BIMCBHKOBIM pO3BIALI A aHANI3y CYNYTHUKOBUX 300pa’k€Hb HU3bKOI SKOCTI, CIPUYMHEHOL
BIJICTAHHIO YW TIOTOJHMMH YMOBAaMH, JI03BOJI€ TOKpAllyBaTH JAeTali3alilo JUis BiTHOBJICHHA
IpiOHUX JeTaned, TakuX sK KOHTypu Oy/iBeNlb, TEXHIKM 4YM INUISAXIB IEpPECyBaHHS, BUSIBIATH
NpUXOBaHI 00'€KTH, 30KpeMa 3aMacKOBaHY BIMCHKOBY TEXHIKY, 3aBJISKH YITKOMY BiJHOBJIECHHIO
TEKCTYp, a TAKOX MPOTHO3YBATH 3MIHM Yepe3 aHalIi3 TOCI1JOBHOCTI 3HIMKIB, 1110 CIIPUSIE BUSIBICHHIO
nepemiiieHHss cuin abo oOnagHaHHA Ha Tepuropii. Takoxk, audy3Hi Mozeni MOXYThb 3HAYHO
MOKPALIUTH SIKICTh BIJEONMOTOKY 3 JAPOHIB 1 KaMep CIOCTEPEKEHHS, Kl 4YacTO CTUKAIOTHCS 3
0OMEKEHHSIMH Yepe3 HU3bKY pPO3AUTbHY 3/1aTHICTh, HEIOCTATHE OCBITIICHHS, aTMOC(EpHi NEPEIIKOIH
YH BEJIMKI B1JICTaH1, 3a0€3MeUyI0YH YITKICTh 300paXkeHb y pealbHOMY 4aci, JeTali3aliio KOHTYPIB 1
TEKCTYp TEXHIKH, JIIOJIeH Ta IHIIUX 00'€KTIB I TOYHOI 1I€HTU(IKALIT LiJIeH, a TAKOK ONTUMI3yI0ud
pPOOOTY CHCTEM aBTOMATHYHOTO PO3Mi3HABAHHS IS IBH/IIIOTO MPUHHATTS TAKTHYHHUX PIIlICHb.
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Buxopuctanus nudy3sHUX Mojenell Mo)Ke 3aCTOCOBYBAThCS ISl MiJTOTOBKHU BIHCHKOBHUX
KaJ[piB y CUMYJIIALIAX OOHOBHX il IIJITXOM BIJTHOBJICHHSI PEANiICTUIHUX 300paKEHb JIsl HABYAIbHUX
TPEHAXEPIB, MOKPAIIEHHS SKOCTI BIpTyaJIbHHX CIIEHAPiiB Yepe3 BHUCOKOSKICHI TEKCTypu Mojelei
0OMOBUX 30H, TEXHIKH Ta JTaHAMADTIB, a TAKOXK JACTAILHOTO aHATI3Y BiJieoMaTepialiB AJis PO3pPOOKHU
HOBUX cTparerii. [liaBuIyBaT po3aiIbHy 3/1aTHICTh TEIUIOBUX 1 paJapHUX 300paKeHb € KPUTUIHO
BOXJIMBUM JUIS BIMCPKOBUX oOIlepauiii y TeMHUH 4dac 1o0u abo 3a CKIaJHUX HOTOJHHX YMOB,
3a0€3Mevylourd BIJIHOBJICHHS YITKMX KOHTYPIB Y TEIUIOBHX 300paXeHHSAX IS iAeHTHdIKamii
TPAHCIIOPTHHUX 3ac00iB, JIOACH Ta iX MEPEeMIMIEeHHS, MOKPAIIEHHS PaJioiOKAIMHUX KapT 4yepe3
BIJTHOBJICHHS TEKCTYPH MOBEPXHI YU 00’ €KTIB HAa OCHOBI paJlapHUX JAHUX, a TAaKOX 3HUKCHHS
NOXHOOK IUISIXOM YCYHEHHS IIyMYy 1 apTe(akTiB, SIKi BUHUKAIOTh I1i]] Yac 3HOMKH.

3acrocyBaHHS AU(PY3HUX MOJIENEH TO3BOJISE MIATPUMYBATH BHCOKHH PIBEHb CHUTYAIiIHOI
00i3HAaHOCTI 3aBJSKA BHCOKOTOYHOMY MOHITOPHHTY KOPJOHIB, 30KpeMa IOKPAIIEHHIO SKOCTI
300pakeHb 1 1meHTrdiKalii mopymneHb a0 HECAaHKIIIOHOBAHOTO MEPECYBaHHS, a TAKOXK aHAIII3Y
CTaHy CTPATETiYHUX OO0’ €KTIB JJs BHUSABJICHHS MOTEHIIMHUX PHU3HKIB, MOIIKO/KEHb UM 3MiH Y iX
cTpykTypi. Y kibepOesmnemni audy3Hi MOAeN MOXKYTh OyTH 1HTETPOBaHi JUIS 3aXKUCTY JIaHKX 1 aHATIZY
NOTEHIIIHUX KiOep3arpo3 MUITXOM BiJIHOBJICHHS MOLIKOKEHUX 300pakeHb, TAKHUX SIK 3alIU(PpOBaHi
abo momkoKeH1 mif yac Kibeparak dororpadii Ta BizeoMaTepiaiu, a TAKOXK MOKPALICHHS aHATI3Y
iH(pOpMaIiifHUX MMOTOKIB Yepe3 JAeTamizamiio i o0poOKy 300pakeHb, OTPUMAHHUX 3 EJIEKTPOHHHX
MPUCTPOIB UM MEPEKEBUX Kamep.

Takum unHOM, Mu(y3HI MoneNi s BICPKOBUX 3aBAaHb € YHIBEPCATbHUM 1HCTPYMEHTOM,
110 3a0e3revye BiAHOBICHHS BUCOKOAKICHMX 300pakKeHb 13 3HMKEHUM PIBHEM IIyMY, ONEPATUBHY
00poOKy HaHWX JJIsl YXBaJCHHS TaKTUYHUX PIllleHb Y PEaTbHOMY Yaci, THy4YKEe BUKOPHUCTaHHS BiJl
CYIMYTHUKOBOI PO3BIIKU J0 aHaIi3y TEIUIOBI30PHUX AAHUX, PEATiCTUYHI CUMYJISIIT 17151 €(pEeKTUBHUX
BIHCHPKOBUX TpPEHYBaHb 1 MIATOTOBKH 10 CKIAJHUX CHUTYAIlii, paJuKalbHO 3MIHIOIOYM MiAXiA 10
aHaizy ¥ oOpoOKM Bi3yaJIbHUX JaHHX, MiJBUIIYIOUU SKICTh PO3BIAKH, MOHITOPHHTY, MiJATrOTOBKHU
KaJpiB Ta ONTHUMI3YIOUM BHUKOPHUCTAaHHS TEXHIKH B pPEAIbHHX YMOBAaxX, 1 CTalOTh HEBiJ €MHOIO
YaCTUHOIO Cy4acHOi 000POHHOI cTpaTertii.

BucHoBkm.

VYHiKanbHa FHYYKICTh JU(QY3HUX MOJeNed N03Bojsie ePEeKTUBHO aAaNTyBaTH iX JO Pi3HUX
TUIIIB JAHUX: BiJ MEJUYHUX 1 CYITyTHUKOBHUX 3HIMKIB 70 ¢oTorpadiii 1 TEII0BI31HHUX 300paxeHb. Y
BINCHKOBIH cdepi Audy3HI MOseNl MatOTh 3HAYHUNA MOTEHIIAN Y TAKMX 3aBJIAaHHSIX, K MTOKPALICHHS
AKOCTI CYNMYTHMKOBHMX JAaHMX, BIJIEONOTOKY 3 JPOHIB, TEIUIOBUX 1 paJapHUX 300pakeHb. BoHu
JO3BOJISIFOTH ~ MIJABHMIYBATH TOYHICTh MOHITOPUHTY, JeTali3allifo CTpaTeriyHUX 00 €KTIB,
1IeHTU(IKALII0 TPUXOBAHUX LLJIeH Ta e(EeKTUBHICT aBTOMaTU30BaHUX CHCTEM PO3MI3HABAHHS, 1110
€ KPUTUYHO BaXJIMBUM JJ1s1 0OOPOHHUX CTpaTeriii. 3arajaoM, Audy3Hi MOJIeNi CTal0Th YHIBEpCAIbHUM
IHCTPYMEHTOM, 3JJaTHUM 3a0€311eYUTH HOBUI PIBEHD SKOCTI B PO3BI/ILi, MOHITOPUHTY, aHaTi31 JaHUX
Ta MiArOTOBLI KajapiB. IX iHTerpamis B pi3Hi radysi, BKIHOYaO4Yd OOOPOHY, MEIHMIMHY Ta
IIPOMUCIIOBICTD, CIIPUSATUME CTAJIOMY PO3BUTKY TEXHOJIOT1H 1 BIAIOBIJA€ BUKIIMKAM Cy4acHOTO CBITY.
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Jlannae [. B., I'ymentok O. O. (Hayionanvnuu mexuiunuu ynisepcumem Yxpainu « Kuiecoxuii
noaimexuiynuti incmumym imeni leops Cikopcorkocoy, m.Kuis, Yxpaina).

METOJIAKA BUSHAYEHHSA PIBHSI JOCTOBIPHOCTI BIOT' PA®I 3 BIKIIIEIII HA
BA31 CEMAHTHYHOI'O HETBOPKIHI'Y

Anomayin: Y pobomi npedcmagieHo Memoouxy 6UHAYEHHs PIGHs O00CMOgipHocmi (akmis y bioepaisx,
HasedeHux y Bikinedii, wjo 0azyemvca HA 3ACMOCY8AHHI GeIUKUX MOBHUX Molenei (LLM) ma cemanmuunozo
Hemeopkiney. Memoouka nepedbauac nobyoos8y cemaHmuunoi mepedxci biozpagii KOHKpemHoi 0codu 3 ypaxyeanHaM
NOCIO0BHUX 36 'A3KI8 MIXHC NOOIAMU ) YACOBOMY KOHMEKCMI Ma acoyiayiuHux 36 'A3Ki8 MidC nooiamu i KOHYenmamu.
Hocnioscenns 30iUCHIOEMbCS 3a OONOMO20I0 8EIUKUX MOGHUX Mmooenell, 3okpema GPT-4, Llama-3, ol ma inwux, wo
dopmyroms "piti gipmyanvrux excnepmig”. L]i modeni 00380a510Mb AHANIZY8AMU CEMAHMUYHY Mepedicy, dopmyeamu
BUCHOBKU, HAdagamu yu@posi oyinku 0ocmosiprocmi biocpagii ma niomeeposcysamu abo cnpocmosysamu ii Kio4osi
MOMeHmMU HA OCHO8I ¢haxmie. Bionogioi pisHux mooleneil y3a2anvHioiomecs 0 06 ekmuenol oyinku. Pesynomamu
O0eMOHCMPYIOMb eQeKMUGHICIb NiOX00Y V GUAGIECHHI HENPABOUBUX (haKmie ma NioeUUieHHi O0CMOBIPHOCME GIOKPUMUX
ooiceper.

Kniouosi cnoea: eenuxi mosni moodeni (LLM), wimyunuii inmenexm, ceMaHmMudnuli HemMEOPKiHe, OYIHKA
docmosiprocmi, 6ioepagis, yugposa sepugpikayis

Abstract: The paper presents a methodology for determining the reliability of facts in biographies provided on
Wikipedia, based on the application of large language models (LLMs) and semantic networking. The methodology
involves constructing a semantic network of an individual's biography, taking into account sequential connections
between events in a temporal context as well as associative links between events and concepts. The study is conducted
using large language models, including GPT-4, Llama-3, 01, and others, which collectively form a "swarm of virtual
experts." These models enable the analysis of the semantic network, the formation of conclusions, the provision of digital
reliability assessments of biographies, and the verification or refutation of key points based on facts. Responses from
various models are synthesized for an objective evaluation. The results demonstrate the effectiveness of the approach in
identifying false information and improving the reliability of open sources.

Keywords: large language models (LLM), artificial intelligence, semantic networking, reliability assessment,
biography, digital verification

Beryn

Bikinenis, Sk BilbHa €HIMKIIONEis, CTalla HE3aMiHHUM JKepesioM iH(popMaIlii A MiTbiOHIB
KOPUCTYBadiB MO BChOMY CBITy. OJHaK, HE3BaKAIOYHM Ha CBOIO MOMYJSPHICTh Ta BIAKPHUTICTH,
Bikineniss He mo30aBneHa HemomikiB. OHMM 3 HaWOUIBII TOCTpUX € MpobiieMa HasSBHOCTI
HEeNpaBIMBUX (QakTiB y 6iorpadisix, ki MOXKYTh OyTH CTBOPEHI HABMUCHO a00 yepe3 noMmiky. Taka
iH(popMallist Hece 3arpo3y sIK JJs 1HAUBIAYalbHOI, TaK 1 JAJIS KOJEKTUBHOI Mam'sTi, a TAKOXK MOXeE
BIJIMBATH Ha pILIEHHs, IPUWHATI Ha OCHOBI 1€l iHdopmanii. [IpoTe, yepe3 BiakpuTHil Xapakrep
pelnaryBaHHs Taki pecypcu fK Bikimeais 4YacTo cTaroTh 00’€KTOM MaHIMyJALId Ta MICTATbH
HenpaB/MBl (akTH, 0cOOIMBO B Ol0rpapiyHUX CTATTSX, AK1 0COOJIMBO BPa3IuBi O TaKUX MPOOiIeM,
a/’ke BOHM € MpPeIMeTOM yBaru mupokoi ayaurtopii [1]. Lle cTBOproe BUKIMKH JJIsI HAYKOBOI Ta
OCBITHBOI CITIJTBHOTH, SIKI TTOKJIAAI0THCS HAa TOCTOBIPHICTH TAKUX JIPKEPET.

[TyuHuit iHTENEKT, a caMe BeiauKki MoBHI Mozeni (LLM), BiAKpUBarOTh HOB1 MOXJIMBOCTI IS
aBTOMATH30BaHOI MEPEBIPKU TEKCTOBUX JaHMX [2]. CeMaHTHUYHI Mepexi, 10 MOJAEIOIOThH 3B’ SI3KU
MDX MOJISIMU Ta MOHATTSIMHU, BIIKPUBAIOTh HOBI MOKJIMBOCTI JUIsl aHAJ13y Ta BepHudikallii TEKCTOBUX
nanux [3]. CeMaHTUYHUI HETBOPKIHT, SIK MiJIX1A 10 aHAI3y 3B’ SI3KIB MiXk MOJISIMH Ta KOHIICTITAMH,
JIOTIOBHIOE 111 TEXHOJIOT1i, TO3BOJIAIOUN CTBOPIOBATH CTPYKTYPOBaHI MEPEKEBl MOJEII TEKCTIB, K1
BiZI0OpakatoTh B3a€MO3B’A3KU (PakxTiB [4].

Meta po60TH — po3poOKa METOI0MIOTIi (2 y ToAaIbIIoMYy — 1H(GOPMAIIHOT TEXHOJIOTIT) IS
BUSIBJICHHS HETIPaBAMBUX (DaKTiB y O6iorpadiuHuX CTATTAX 32 JOMOMOTOI0 BEIMKHX MOBHUX MoJeneit
Ta CEMAaHTHYHOTO HETBOPKIHTY.

Jnist nocArHeHHs 11i€l MeTH nepe0ayaeThCsl BAKOHAHHS TaKUX 3aB/IaHb:
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1. Bukopucraru Benuki moBHi Mojaeni GPT-4 (cepsic ChatGPT), Llama-3 (cepsic Grog),
01 (cepsic Deepseek) Toio /i moOYI0BU Ta aHATI3y CEMAHTUYHOT MEpPEXi Ha 0a3i aBTOMAaTUYHOTO
aHajizy Tekcty 6iorpadii.

2. OIIHUTH TOCTOBIPHICTH KOYKHOTO 3B’SI3KY Y MEPEXi Ta CEMAaHTHYHOT MEPEXI B IIIJIOMY.

3. Po3pobutn meToauky hopMyBaHHS y3araJlbHEHHS BUCHOBKIB, OTPUMaHHUX Bia "poro
BIpTyaJIbHUX EKCIEPTiB".

VY cydacHii HayKOBiH JITEpaTypi MHUPOKO JOCIHIKYETHCS 3aCTOCYBAaHHS IITYYHOTO IHTEIICKTY
JUIsl BUSIBJICHHS Ae3iH(dopmaii [5], npore Bepudikaris 6iorpadiyHux JaHUX y BIAKPUTHX JKepelax,
y TOMY YHCIIi, 32 IOTIOMOTOI0 CEMAaHTUYHOTO HETBOPKIHTY € HOBHM HAIPSIMOM.

PobGotu y cdepi aBroMaTu4HOI nepeBipku (aKTiB aKTHBHO PO3BUBAIOTHCS. METOAMKH, IO
0a3yroThcs Ha TpadoBUX CTPYKTypax [6], Ta anamizi rekcty uepe3 LLM [7] neMOHCTPYIOTh BUCOKHIA
noTeHmian y Bepudikarii ingopmariii. YTiMm, TOCTiIKEHHS, SKi TOEIHYIOTh CEMAaHTHYHI MEpPEXi Ta
LLM nns nepeBipku Oiorpadiuaux (axTiB, € HEAOCTATHHO MPEACTABICHUMH.

Konuemnist "poro BipryanpHHX ekcriepTiB" [8], [9], mpomoHyIOTh MEepCreKTUBHI MiAXOIU 10
noOyJI0BH CEMaHTHYHHUX MEpEeX. [HIII TOCTI/KEHHS aKIIeHTYIOTh yBary Ha 3actocyBanHi LLM mis
aHaTi3y TEKCTy, alie 3Ae¢O0iIbporo He (POKYCYIOThCS Ha iX iHTerparii 3 MeTogaMHu CEMaHTHYHOTO
MOJICTTFOBaHHSI.

MeTtoauka

MeTtoauka BUsBIeHHS HenpaBauBuX (PakTiB y 6iorpadisx Bkirouae Bukopuctanus LLM ans

ToOTo HUIIXOM 3aCTOCYBaHHsS ceMaHTHYHOTO HeTBOPKIHTY [10] dopmyeTbesi cemaHTHUHA
Mepeka, sKka HaJaldli € OCHOBHHM OO’€KTOM JIOCITIJDKeHHS 1 OIiHOK. Hmkde HaBeneHO eramu
METOIMKHU Pa30M 13 BiJIITOBITHUMHU ITPOMIITAMH.

1. Dopmyeanns cemanmuunoi mepeyxci diozpagii

s hopMyBaHHSI CEMaHTUYHOI MEpesKi BUKOPUCTOBY€EThCS TEKCT Oiorpadii 3 Bikineii.

3a monomoror LLM CTBOPIOETHCS CEMaHTHYHA MEPEkKa, JIe BY3JU MPEACTABISIOTh MOIi1 a00
KOHIIETITH, a 3B’3KM — BIJIHOLIEHHS MDX HHUMH. Po3rnspmaerscs aBa BHUAM 3B’SI3KIB — 4AacoOBi-
CIPSIMOBaHIi: BU3HAYAIOTh MOCIIIOBHICTh MOJIH y yaci, a TAKOXX acOMiaTHBHI: 3B’S3YyIOTh MOZII 3
noHsATTAME. CeMaHTHYHA Mepexa MozenoeThes sk rpad G=(V,E), ne V — MHOXUHA By3miB (101t
abo koHIenTiB), a E — mHOoxuHa 3B’s3kiB Mk HUMHU. KoxkeH 3B’s30k € € E mae Bary Pe 110
BiJJ0Opakae 1Ooro JOCTOBIPHICTD.

@®opMyBaHHS MepexXl 3IIHCHIOEThCS 4Yepe3 CIeliaJbHO pOo3poO0JieHI NPOMITH, SKI Yy
CTPYKTYPOBAHOMY BUTJISI/II BUTSTYIOTh KJIFOYOBI1 MOJIIi Ta X MOCIiJOBHICTb.

Jns xoxxHOT 61orpadii BU3HAYaIOThCs KIFOYOBI MO, 10 CTPYKTYPOBaHI y XPOHOJIOTITYHOMY
MOPSIIKY, JUIS IIBOTO 3aCTOCOBY€EThCs mpomnt A0 LLM:

Bisemu mexcm 6ioepaii’ [im’si moounu]. Buznau ocnosHi nooii' y XpoHono02iuHomy nopsioK).
Dopmyniosamu nodii kopomko, 00 5 cnie. Buseou pezynomam y ¢hopmami: "nodisl;noodial", oe
"nooisl" siobynaca paniwe 3a "nodial". Ilomim "nodia2;nodia3", nomim "nodisn3;nodis4". Toomo
nepwia noodisi HOB020 psOKa 8ionogidae Opyeil nodii nonepeduvozo psaoka”. Ilpuxnadu
nocnioosHocmi: "napoouscs, wkoaa";, "wkona;, incmumym". I max oani. Kooscna napa nooii -
oxpemum psaokom. Ocv mexcm biocpaii: ...

OuikyBaHMi pe3yabTaT BUKOHAHHS LIbOT'O MPOMITY MAa€ MaTH BUIJIS;

"Hapooowcenns; Hasuanns"
"Hasuanus, [louamoxk kap'epu”

Ilicasa mporo HOJAIOTHCS acOIiaTUBHI 3B’ SI3KH MiX ITOJIIMH Ta ITOHITTIMHU, 1110 JOIIOMAararTh
3pO3yMiTH KOHTEKCT KOXHOI mofii. [le J03Bomsie CTBOPUTH KOMILIEKCHY MOJIETh, SIKa BPaXOBY€E HE
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TUIBKH YacoBi, a i acOIIaTUBHI 3B’ I3KH MK MOAISIMH Ta KOHIenTaMu. /[Jis 1oqaBaHHsI NOHATH 10
nopjii i popMyBaHHSA acOLiaTHBHUX 3B’fA3KIB 3aCTOCOBYETHCSI APYIHid IPOMIIT:

Ha ocnosi mexcmy 6ioepadhii’ [im’s nroounu] 3uaiiou konyenmu, nog s3ami 3 KONCHOIO NOOIEN.
Buseou pesynemam y chopmami: "noois,nonamms”. I1o0dii 6yno suznaueno suwye:

HapoOuscs; HaB4aHHs 6 2IMHA3IL

HABYUAHHSA 8 2IMHA3II, HABYAHMHS 8 YHIGepCUmemi

HABYAHHSA 8 YHIgepCUmMemi; OMpUMAHHI HAYKOBO20 36AHHS Ma2icmpd...

OuikyBaHUil pe3y/bTaT BUKOHAHHS JIPYroro MpOMITY Ma€ MaTH BHUIJIS:

"Hasuanmus, Ynieepcumem"
"Ilouamox kap'epu, Komnanis"

2. Ouinka oocmosgipnocmi 3 eukopucmanuam LLM

OriHKa JOCTOBIPHOCTI KOXKHOTO 3B’SI3KY Y MEPEXKi € BaKJIMBUM €TaroM. J{Jis 4acoBUX 3B S3KIB
OLIIHKA TIPOBOJUTHCS HA OCHOBI JIOTIKH XPOHOJIOTIT MO, a /ISl acOIiaTUBHUX 3B SI3KiB — Ha OCHOBI
KOPEKTHOCTI BiJOOpa’KeHHS MOHSTTSA Y KOHTEKCTI MOii.

Benmki MoBHI Mozieni (hopMyrOTh "piif BipTyaJIbHUX €KCHEPTIB" IS OI[IHKH 3B SI3KIB Y MEpexi,
a caMe 4YacoBUX 3B’A3KIB, IO OI[IHIOIOTHCS HA OCHOBI XPOHOJOTIYHOI Y3TOJKEHOCTI MOiH, i
acouiaTUBHHUX 3B’f13KiB, sIKi aHATI3YIOTHCS Yepe3 MepeBipKy JOTriuHOT 1 (PaKTUIHOT BiAMOBITHOCTI

Jl1s KOKHOTO 3B 513Ky BUKOHYETBHCS OIlIHKA JOCTOBIPHOCTI Ha OCHOBI (DaKTiB, 3HAWJEHUX Y
30BHIIIHIX JuKepenax abo BHYTPIIIHIX 0a3ax 3HaHb Mojenel. KoxkeH 38’430k oTpuMye Bary W; siKa €

YHCIIOBOIO OI[IHKOIO JOCTOBIPHOCTI 3B’3Ky MiXk By3iamu | Ta j. OuiHKa MPOBOAMTHCS KiIbKOMa
MOBHHMH MOJICIISIMH, TICIIS YOTO 1X pe3yJIbTaTH arperyrThCsl.

Jns KOoXHOTO 3B’SI3KYy y Mepexi (opMmyerbcss BaroBa OIliHKa, IO BifgoOpaxkae oro
JOCTOBIPHICTb.

Jlns ko>kHOT 4acoBOi Mapu MOMISI-TIOJIS MTPOBOJUTHCS OIlIHKAa JTOCTOBIpHOCTI. sl bOTO
BBOJIMTHCS IIPOMIIT:

Hna 6iocpaghii noounu [6cmasumu mexcm 6Oiocpaii] nepesip 00CMOBIPHICIb KONCHO2O
38’3ky  y ¢popmami "nodisl;nodisl". Bueeou oyinky oOocmosipnocmi y ¢hopmami:
"nooisl ;noois2; oyinka (0-1)".

OuikyBaHuii pe3yibTaT BAKOHAHHSA I[bOT'0 MPOMIITY MAa€ BUIJISIL:
"Hapooowcenns,; Hasuanns; 1"

"Hasuanns, [louamox kap'epu;0.9"
Im. i

Jlist KoxHOT o111 Ta MOHATTS MEePEBIPSETHCS BIAMOBIAHICTD IXHBOTO 3B S3KY.

J11s1 KO’KHOT acoIiaTUBHOI Mapy MOJISA-TIOHSTTS TAKOXK MIPOBOIUTHCS OLIIHKA JOCTOBIPHOCTI Ha
OCHOBI BIJIOBIAHOCTI OHATTSA A0 KOHTEKCTY. J{J1s IIbOTO BBOJUTHCS IPOMIIT:

s 6ioepaghii moounu [6cmasumu mexcm oOioepaghii] oyinime 0ocmosipHicms 36 ’3Ki8 Y

Gopmami "nodis;nonsmms”. Bueeou pezyromam y popmami. "noois,; nousmmsi; oyinka (0-1)".

VY pe3ynbTari 1bOTO KOKEH YacOBHUH 3B 30K MiXk MOAISIMH OI[IHIOETHCS HA BiJIMOBIAHICTH
XpoHoJorii Ta joriui. O4uikyBaHuii pe3yJbTar:

"Haeuanns, Yuisepcumem,(0.95"
"Ilouamox kap'epu; Komnanis; 0.85"
L m.i.

3. Y3acanvnenns pezynemamis
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AHaI3YIOTBCS BIATOBIAI PI3HUX MoOJENeH, iX Y3ro/KEHICTh Ta WMOBIpHI PO301KHOCTI.
3aranpHa JOCTOBIPHICTh MEPEKi OOUUCIIOETHCS SIK 3BAXKEHE CEPEIHE 3HAUCHHS IOCTOBIPHOCTEH yCiX
3B’SI3KIB:

@D PEO+B-Y. . Pe)

PO) =

time assoc |

ne:
— Etime — MHOKHHA 4YaCOBUX 3B’ SI3KIB;
— Eassoc — MHOKMHA acoLllaTUBHUX 3B’ A3KiB;
— P(e) — Baru 3B’s13KiB;
— o 1 B — BaroBi Koedili€HTH IS YaCOBUX 1 aCOLIaTUBHUX 3B s3KiB (a0 + B=1).
Barn w; BH3HAYAIOTHCS SIK CEPE/HE 3HAYCHHS OLIHOK, OTPMMAHMX BiJ| NCKUIBKOX MOBHHX

MoOJIeINeH, 10 BXOAATH /10 "pOro BipTyalbHHUX €KCIEepTiB':
iz i

e N — KUIBKICTh MOJETIEH, W!Jf — orfiHKa MoJieni K ist 38’s13Ky MK By3Jiamu | Ta j.

BinnoBiai KOXKHOI MO arperyroThCsl 4Yepe3 CepeHe 3HAUYCHHS OLIHOK. JIJis miJBUIECHHS
JIOCTOBIPHOCTI BPaXOBY€ETHCS YACTOTA MIATBEPKEHHS (DAKTIB PI3HUMH MOJIEIISIMHU.

Binnosiai pi3HMX MOBHUX MoJiesiell HOPIBHIOIOTHCS Ta y3arajbHIOWOThCA. OcoOnuBy yBary
NPUIUIAETHCS BUMAAKaM PO30DKHOCTEH y OIIHKAX, SIKi JOAATKOBO MEPEBIPSAIOTHCS HA BiIOBIIHICT
(dakram.

4. Inmezpanvna oyinka 0ocmogipnocmi

IaTerpanpHa OLliHKa MEPEX1 MPOBOJUTHCS 3 ypaXyBaHHSIM BaroBUX KOEQIIIEHTIB 7S YaCOBUX
1 acoliaTUBHUX 3B’s13KiB. Barosi koeimieHTH BU3HAYAIOTHCS TAKUM YHHOM: ISl YACOBHX 3B SI3KIB 0
= 0.7, ns acoriatuBauX [ = 0.3. [y oTprMaHHS iHTETpabHOI OLIHKA BBOJUTHCS ITPOMIIT:

a OCHOBI HACMYNHUX 368 'A3Ki6 | IXHIX OYIHOK (Yacosi ma acoyiamusHi) po3paxyi iHmespaibH
H.
OYIHKY 00CMOGIPHOCII CEMAHMUYHOL MepedrCi:
Yacoei 36 ’a3ku: [nepenik uacosux 38 ’a3kie y popmami "nodisl;noodial;oyinka'].

] [ 36 'A13KU: [nepenik acoyiamusHux 36 ’s3Kie y popmami "noodis; nonamms,; oyinka'"y.
Acoyiamueni 36
Bpaxyii sazo6i koegiyicnmu: ons uacosux 36 szkie alpha = 0.7, s acoyiamuenux beta = 0.3.
Pezynomam suseou y euensaoi: "lnmeepanvna oyinka = snauvenus”.

OuikyBaHuii pe3yJibTaT Ma€ NPUOJIN3HO TAKUI BUIJISAA:
"Inmeepanvna oyinka = 0.91"
J1sl 10XaTKOBOIO MOSICHEHHSI I0CTOBIPHOCTI 32CTOCOBY€ETBHCSI IPOMIIT:

[osicrhu, saxi 36’°sa3xku (yacosi wu acoyiamueui) HatOiIbUe BNAUHYIU HA 3A2ANbHY OYIHKY.
Bueeou oemanvhuil ananiz okpemux oyiHok.

5. Aepezosana ouinka
JlJisi OTpMMAaHHS arperoBaHol OLiHKM HA OCHOBi OLIHOK 3B’AI3KIB Bil KUIbKOX MOBHHMX

mozaeseii (GPT-4, Llama-3, o1) 3acTocoBy€ThCSI IPOMIIT:

s Hacmynuux oyiHOK 38 'A3Ki8 8i0 KiIbKOX MOBHUX MOOENEl.

[nepenix oyinox y ¢gopmami "noodisl;nodisl;oyinka mooenil, oyinxa moodenil, oyinxa
mooeni3"]

Pospaxyii cepeonto oyiHKy KOHCHO20 36 'S3KY, 4 MAKONC 3A2ANbHY IHME2PATbHY OYIHKY MePexCi.
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Pe3zynomam euseou y hopmam

- "Cepeous oyinxa 36 ’s13ky: nodisl ;noois2;cepedne 3nauenns’".
- "Inmezpanvua oyinka mepexci = 3uaueHHs".

OuikyBaHui pe3yJbTaT MOKe MATH TAKHI BUIJISIL:

"Cepeons oyinka 36 ’a3ky: Hapooowcenns, Hasuanns, 0.95"
"Cepeons oyinka 38 ’s3ky: Hasuanns, I[louwamox kap'epu,;0.9"
"Inmeepanvna oyinka mepedxci = 0.92"

[Tpuknan 3acTocyBaHHs

Hns nemoHcTpanii MeTtonuku Oyno oOpaHo Oiorpadiro BiZIOMOro BYEHOTO MaTeMaTHKa
Jleonapna Eitnepa 3 Bikimnesii. 3acTocoBaHO CIpOITIEHY METOAMKY, 110 OXOIUTIOE eTaru (popMyBaHHS
CEeMaHTHUYHOI MEpexi,i OLIHKM TOCTOBIPHOCTI OKPEMHUX 3B’S3KIB 1 BY3JIB 1 arperaiii pe3yibTaTiB
pizaux LLM.

Jast popMyBaHHSI CEMAHTHYHOI Mepexki Y IbOMY BHIA/IKY 3aCTOCOBYBAJIMCH NMPOMITH
AJsl BUJAUIEHHS OCHOBHUX MOl Oiorpacdii Ta moOynoBa 4acoBUX 3B’S3KIB MK HMMH, a TaKOX
3HAXOJPKEHHS MOHATH Ta (OpMyBaHHS aCOIIATHBHUX 3B’ SI3KIB MK HUMH Ta TIOHATTSIMH.

[TpoMnT 115 BUALIEHHS OCHOBHUX moAiil 6iorpadii Jleonapaa Eitnepa ta modynoBa yacoBux
3B’SI3KIB MK HUMH Ma€ BUTJISI:

Bizbmu mexcm bioepagii Jleonapoa Eiinepa. Busnau 0cHO8HI nOOii Y XpOHON02IUHOMY NOPAOKY.
Dopmyniosamu nodii kopomko, 00 5 cuis. Buseou pezyriomam y gpopmami: "nodisl;noois2”,
Oe "nooial" siobynaca paniwe 3a "nooial". Illomim "nooia2;nooia3", nomim "nodia3;nooia4".
Tobmo nepwa nodis Ho8o2o psaodka eionosioac opyeaiti nodii nonepedHvoeo psaoka”. [lpuxnaou
nocnioosHocmi: "nHapoouscs; wxona"; "wkona; incmumym". I max dani. Kooscna napa nooiti -
okpemum paoxkom. Ocoe mexcm dioepadii: ...

VY Bignosiae Ha e npomnt LLM BunaroTh mpuOIM3HO Take:

HApoOUBCs;, HABUAHHS 8 CIMHA3IT

HABYAHHA 6 2IMHA31I, HAGYAHHSA 6 YHIgepcumemi

HABYAHHS 8 YHIBEepCUmMemi, OMPUMAHHSA HAYKOBO20 36AHHS Ma2icmpa

OMPUMAHHSL HAYKOB020 36AHHSA Mazicmpa, 8i0M08a 8i0 meonozii

siomosa 6i0 meonoeii; npogecopcvka nocaoa 6 Cankm-Ilemepoyp3i

npoghecopcvka nocaoa 6 Cankm-Ilemep6yps3i; 3uaiiomcmeso 3 Xpucmuanom I one0daxom
3Hatiomecmeo 3 Xpucmusinom I onvobaxom,; odiimanHs nocaou npogecopa gizuxu
00itiManHs nocaou npogecopa gizuxu; o0bitiManHs nocaou npogecopa mamemamuxu
00llMaHHs Nocaou npogecopa Mamemamuxu,; OCinIeHHs Ha 0OHEe OKO

oclinjieHHs Ha o0He oKo; 3anpouients 00 bepnincokoi akademii

3anpouwients 0o bepaincokoi akademii; nogeprenus 0o Cankm-Ilemepbypea
nogeprenns 0o Cankm-Ilemepbypea;, ocmamoune ocninienns

0CmamouHe OClinIeH s, CMEPMb Yepe3 KPOBOBUNUE ) MO3OK

Jl1s nogaHHs acoiaTUBHUX 3B’ SI3K1B MIXK MOJIISIMU Ta MOHSTTSMH, 1110 I0IIOMaratoTh 3p03yMITH
KOHTEKCT KOXKHOT 1oJ1ii ()OpMYETHCS TPOMIIT:

Ha ocnosi mexcmy 6Gioepagii Jleonapoa Eiinepa 3natiou xomyenmu, noe’si3aui 3 KOMCHOIO
nooierw. Bugedu pezynomam y ¢hopmami: "noodia;nonammsa”. I1ooii O6yno eusnaueno suuje:
HApoOUBCs;, HABYAHHSA 8 2LMHA3II HABUAHHSA 6 2IMHA3Il, HABUAHHA 8 YHIBepCcUmemi HAGYAHHS 8
VHigepcumemi; OMpUMAHHI HAYKOBO20 36AHHS Ma2icmpa

Pe3ynpTar onparroBaHHs TaAKOro MPOMITY Ma€ TaKW BUIJISIL:

Hapoouecs,; [llseliyapis, bazens, céaujeHux
HasuaHus 6 2iMHasii; mamemamuka, Mozannec Bypkeapom
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HAB8YaHHs 8 YHieepcumemi, yYHigepcumem basens, Hoeann bepnynni

OMPUMAHHS HAYKOB020 38aHHA Mazicmpa, ginocoghcvki noenaou, Hetomon, /lexapm
8i0M08a 8i0 Meo02iil; Meon02is, HaYKa

npoghecopcorka nocada ¢ Caunkm-Ilemepoypsi; ynieepcumem Canxm-Ilemepbypea, /anienw
bepnynni

3Havtomemeo 3 Xpucmusnom I onbobaxom; meopis wucen, Xpucmusn I onv0oax
obilimarHs nocaou npogecopa gizuxu, ¢izuxa, npoghecop

006itimManus nocadu npoghecopa mamemamuxu, mamemamuxa, /lanienv beprynni
ocinjieHHs Ha 0OHe OKO; 8mpama 30py

3anpoutenns 0o bepnincoroi akademii; Bepaincoka axademisn, Opiopix Beauxuii
noseprenns 0o Cankm-Ilemepoypea;, Cankm-Ilemepbype, nayka

ocmamouHe OCNINIeHHs, NOBHA 6Mpama 30py

cMepmyb yepe3 KPOBOBUIUG Y MO30K,; CMEPMb, MEOUUHUL CIAH

Takum ynHOM 13 Oiorpadii BU3HAUEHO KJIIOUOBI Mojii Ta mMOOYZOBAaHO MEpEeXY 3 BY3MIB i
3B’s13KiB. Bizyanizaiito 11i€i Mepexxi MoxkHa modayutu Ha Puc. 1.

Cachr—l'leTepGy.ayKa, A0CNIHUK

BepniHcbka akan. ®piapix Benukuit BTpaTa 3op’qum7| cTaH
ocninneHHn,®<He 300p0B'A n PHEHHS [ \KT-ﬂeTepGypra
3anpoLUEHHA 4O iHCbKOT a MiT )
st f@opy OCTaToq»’mnneHHﬂ
: CMepTh, b.HMﬁ cTaH
MaTeMaTM@iKﬂa}laHHﬂ ocninneH OAHE OKO CaHKT—I'Ie.épI', Havka
Mep%'b yepes i.)BVIJ'WIB Y MO30K
|

akagemina, Ha.ﬂocnin)«eHHn

€copa MmaTemMmaTukun

nosHa .ra 3opy
CMEPTb, M’a npuinHa

maTemaTtuka, @eﬂb Beprynni

obilimaHHA nocaaun

miama@@}amecop

obifimaHHA nocagj

¢ 1 Mpochecopa disnku
miamxa,:éﬁ(gganaHHn_ )

Tegpiﬂ yucen, C i
3HanomMcTBO 3 Xp ,§1H0M [onbpbaxom

Teapis qwoéi\ aTemanm Lo
p i WWeinyapin, Basens, canueHi

Hayka, T@iﬂ, BUBIp

B CaHkT-lNeTepOypsi MaTemaTika, l?l_o’a;‘:r«ec BypKrapATHap_9MBcﬂ

npocpecopcbka noc

yHiBepcuTeT CaHKT-ne'l@pra‘ Daniens BepHynni dinocodcski norsiy
CaHkT-MNeTepbypr, @ecop. MaTemartuka

HetoToH, fekapT
oraHH BepHynni R .
HaB‘laH\ A B/lrIMHaSII

BepcUTeTI—

CTpa rlMHaaqu}l—a};eMaTMKa

LLIaeHL(apm;gé}enb, Hayka

OigMaHHﬂ HayKo
Teon ayKa
i / HiB_eECMTET MaTemaTuka
maricTp, H@MM CTynIH
Pucynoxk 1 — CemanTruuyHa Mepesxa, 1o BiAnmoBigae HaBeAeHiH y Bikinenii 6iorpadii Jleonapna
Eiinepa

OriHKa JOCTOBIPHOCTI ISl YaCOBHX 3B’ A3KiB IPOBOIUTHCS HA OCHOBI JIOT1KM XPOHOJIOT1T MO,
a JUId acOlaTUBHUX 3B’S3KiB — Ha OCHOBI KOPEKTHOCTI BiOOpaKEHHS MOHSTTS Y KOHTEKCTI MOAII.
st 3nilicHeHHsT Takoi OIIHKU A KoxkHOi 3 LLM 31iliCHIOEThCS 3BEpHEHHS IIIJISIXOM BBEACHHS
poMIITA:

Jliis HaBeZieHOT Mepexi, Je By3JaMH € MOJil 1 KOHLENTH 13 Oiorpadii JIOJMHN YHCENbHO B
nianasoni [0,1] ominm Ti 3arajgbHy JOCTOBIPHICTb, y3arajlbHIOIOYM TOCTOBIPHICTH 3B’SI3KiB MiX
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HOisIMU, KOHIIENITAMH, A TAKOK KOHIeNTaMK Ta nodisiMu. [1icis 1iporo Haait KOPOTKE MOSCHEHHS.
Ocp mepexa:

HapoOuBCs; HABUAHHS 8 CIMHA3IT

HABYAHMHSL @ 2IMHA31I, HABYAHHS 8 YHIBepcUumemi

HABYAHHA 8 YHIgepcumemi; OMpUMAHHs HAYKOB020 36AHHS Mazicmpa

OMPUMAHHSL HAYKOBO20 36AHHS MA2ICMPaA, 8i0M08a 6i0 meoo2ii

siomosa 6i0 meonoeii; npogecopcvka nocaoa 6 Cankm-Ilemepoyp3i

npoghecopcvka nocaoa 6 Cankm-Ilemepoyp3i; 3naiiomcmso 3 Xpucmuanom I one0doaxom
3Hatiomemeo 3 Xpucmusinom I onvobaxom, odiimanHs nocaou npogecopa gizuxu

Im. i

VY Bianosiap cucremu LLM HagaroTh CBOT OIIIHKH TOCTOBIPHOCTI, HanpukiIaa, DeepSeec umae
TaKe:

s oyinku 3a2anbHOI 00CMOBIPHOCMI CEMAHMUUHOL Mepedici, KA CKIa0aeEmvbcs 3 nooill ma
KOHYenmie, Mu BUKOPUCTOBYEMO 36adiCeHe CepPeOHE 3HAYEHHS OOCMOBIPHOCMEU BCIX 36'A3Ki8 Y
mepedrci. Koowcen 38'a30Kk mae caiii 6a2osuti KoeghiyicHm, AKull 3a1excums 8i0 muny 36'a3Ky (yacosuti-
CNPAMOBAHUL OO0 acoyiamueHull).

Bacosi koeghiyicnmu.

—  Yacoesi-cnpamosani 36'a3ku: Wiime=0.7
- Acouiamueni 36'a3ku: Wassoc=0.3
Oyinka 0ocmosipHocmi 368'a3Ki8:
1. Yacoei-cnpamosani 36'a3xu:
- Hapoouscs; HasuanHs 6 cimnazii: P1=0.9
—  Hasuauws 6 2imHasii; HaguanHs 6 ynisepcumemi. P2=0.8
—  HABUaHHS 8 YHIGEpCUMemMI, OMPUMAHHS HAYK06020 36anHs macicmpa: P3=0.9
—  OMPUMAHHS HAYKOB02O0 38aHHs Mazicmpa, 8iomosa 6id meonoeii: P4=0.7
—  8iomo8a 8i0 meonoeii; npogecopcvra nocaoa ¢ Cankm-Ilemepoypsi: P5=0.8
- mpogecopcvka nocaoa 6 Canxkm-lIlemepbyp3si; 3uaiiomcmeo 3 XpucmusiHom
Tonvobaxom: P6=0.7
- 3Hauomcmeo 3 Xpucmusnom lonvobaxom, obiumanHa nocaou npogecopa
Qizuxu: P7=0.8
- obiumannsi nocaou npogecopa  @Qizuxu;  obilmanHs  nocadu  npogecopa
mamemamuxu: P8=0.9
- o0bitmanns nocaou npoghecopa mamemamuku, ociinierts na oone oxo: P9=0.6
— oclinjieHHs Ha 00He 0Ko, 3anpouients 0o bepnincvkoi akademii: P10=0.7
- 3anpowenns 00 bepaincovroi akademii; nogepnenns 0o Cankm-Ilemepoypea: P11=0.8
- noeepuenns 0o Cankm-Ilemepbypea, ocmamoune ocninnennsa: P12=0.7
- ocmamouHe OCNinieHHs; cmMepmy yepe3 Kpososuaus y mozok. P13=0.9
2. AcouiamueHni 36'a3ku:
- Hapoouscs; lllseiyapis, bazenw, ceawenux: P14=0.8
—  Hasuauua 6 2imnaszii; mamemamuxa, Hozannec Bypxeapom: P15=0.9
- HasuamuHs 8 YHieepcumemi, yHigepcumem bazens, Hoeann bepnynni: P16=0.8
—  OMpUMAaHHA HAYKOBO20 36aHMA Macicmpa, ginocogcwbki  noenaou, Hviomon,
Hexapm: P17=0.7
- 6i0mosa 6i0 meonoeii; meonoeis, nayka: P18=0.8
- npogecopcoka nocada 6 Canxm-Ilemepoypsi; ynieepcumem Canxkm-Ilemepbypea,
Hanienv bepuynni: P19=0.7
—  suatiomcmeo 3 Xpucmusinom I'onvodaxom,; meopis uucen, Xpucmusin Ionvobax: P20
=0.8
— obitmanns nocadu npoghecopa izuxu,; ¢izuxa, npoghecop: P21=0.9
- 006itimanHs nocaou npogecopa mamemamuxu, mamemamuxa, /lavienv bepuyani: P22
=0.8
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- ocninnenus Ha o0He oko,; empama 3opy. P23=0.7

- 3anpouwenns 0o bepincoroi akademii; bepnincoka akademis, @piopix Benuxuii: P24
=0.8

- nosepuenns 0o Cankm-Ilemepoypea; Cankm-Ilemep6ype, nayka: P25=0.7

- ocmamoyHe ocainiienus; nosHa empama sopy. P26=0.9

—  cMepmb uepes Kpo8OBUNUS ) MO30K, cmepmb, meduunuti cman: P27=0.8

- Hapoouscs,; llseiiyapis, baszens, nayka: P28=0.9

- HaeuaHus 6 2iMHa3ii; cimuasia, mamemamura: P29=0.8

- HaeuauHs 8 yHisepcumemi, yHieepcumem bazens, mamemamuxa: P30=0.9

—  OMPUMAHHA HAYKOBO20 36AHHA Mazicmpa, mazicmp, Haykosuti cmynins. P31=0.8

- 8iomosa 6i0 meonoeii; Hayka, meoaoeis, eudip: P32=0.7

- npogecopcoka nocada 6 Canxm-Ilemepoypsi; Canxm-Ilemepoype, npogecop,
mamemamuxa: P33=0.8

- 3uatiomcmeo 3 Xpucmusinom I'onvobaxom, meopis uucen, mamemamux: P34=0.9

- obiumanns nocaou npogecopa ¢izuxu, gizuxa, suxnraoanus: P35=0.8

- 0biUMmanHs nocaou npogecopa mamemamuxu,; mamemamuxa, suxiaoanms: P36=0.9

—  OCHIineHHs Ha 0OHe OKO, OCainients, Qizuune 300pos's: P37=0.7

- 3anpowenns 0o bepaincvkoi akademii; axademis, nayka, oocniodcennsn: P38=0.8

— nosepuennsi 0o Caumkm-Ilemepbypea; Canxkm-Ilemepbype, nayka, oocnionux: P39
=0.7

- ocmamouHe ocrinienus, empama 30py, @izuunuti cman: P40=0.9

-  cMepmb uepes KPOBOBUNIUB Y MO30K, cMepmb, meouuna npuyuna: P41=0.8

Obuucnenus 3a2antbHOi 00CMOGIPHOCI:

(13 a \
P(G)=] D Wype: Pi+ D W,ioe - P, |/ 41~0.76.
)

i=1 j=14

3acanvua 0ocmosipricms cemanmuunoi mepeoici cmanosums npubauzno .76, wo exazye Ha
docums 8UCOKY Oocmosipuicme 6iocpaii. Binvwicms 38'a3Ki6 Maomv GUCOKY UMOBIPHICMb
00CMOBIPHOCMI,  0COOIUBO  UACOBI-CIPAMOBAHI  38'S3KU, SKI 8I000paxdcaromov  XPOHOJOCIUHY
nocni0osHicmb Nooditl. AcoyiamusHi 36'13Kku MaKkoic Maroms 8UCOKY 0OCMOGIPHICIb, WO CEI0YUMb
npo pereeaHmHicmb KOHYenmis 00 nooill.

Bucnosxu

VYV miit poboti Oyna po3pobiieHa METOOJIOTIS Ta CTBOpeHa i1HQoOpMalliifHa TEXHOJOTIS s
BUSIBJICHHS Ta Bepuikaiii HempaBauBUX ¢akTiB y Oiorpadisx Bikinmexii, mo 06a3yeTbcs Ha
BUKOPHUCTAHHI BEJIMKMX MOBHHUX MOJENEN 1 CEMAaHTMYHOIO HETBOPKIHTY. 3alpONOHOBAHUMN MI1IX1]
JI03BOJISIE:

1. IloOynyBaTu aeTajibHy CEMAHTHYHY Mepe:Ky Oiorpadii, opieHTOBaHY Ha XPOHOJIOTIYHY

NOCJIIOBHICTH MO TAa J0aBAHHS PeJIeBAHTHUX KOHLENTIB.
2. OUiHUTH AOCTOBIPHiCTH OKPEeMHX 3B'A3KIB Ta BCi€i Mepe:xi B Lij10My 32 10IIOMOI 010
NPOMIITIB.

3. BuxkopucroByBaTH pi3Hi BeJIMKi MOBHI MO/ieJi /sl He3aJ1e:KHOI OLiHKH Oiorpadii Ta

¢hopmyBaHHs ""poro BipTyabHUX eKcnepTiB"'.

4. Y3araJbHUTH Pe3yJbTAaTH OUIHKH Pi3HUX MoJeJeH Ta HANATH 3arajibHy OLHKY

aocToBipHOCTI Giorpadii.

HaykoBa HOBH3HA poOOTH MOJISTa€e Y HACTYITHOMY:

1. Bmepiie 3anpornoHOBaHO METOAMKY MOOYA0BH CEMaHTHUYHOI Mepexi Olorpadiit 3 nqBoma

THIIAMH 3B’ A3KIB MK HOIIMH Ta KOHIIEITAMHU.
2. VYmepmie 3acTOCOBaHO KOHIICTIIIIO "pOIO BipTyalbHHX eKCHepTiB" mis Bepudikaril
TEKCTOBUX JaHUX Y OiorpadiyHUX CTATTSX.
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3. BusnaueHo mmdpoBi kpuTepii OIIHKK JTOCTOBIPHOCTI K OKPEMHX 3B’SI3KiB, Tak 1 BCi€l
Mepexi B HIIOMY

4. Po3po0JIeHO METOMOJOTII0 OILIHKHA JOCTOBIPHOCTI, mo moennye LLM Ta cemanTuunwmit
HETBOPKIHT.

5. BmpoBamkeHo MOJIeIb iIHTErPAIbHOI OIIHKH, SIKa BpaXOBY€ BaroBi Koe(illi€eHTH 4acOBUX Ta

aCoILlIaTUBHUX 3B SI3KiB.

Kpim TOro, 3amponoHOBaHMW MigXiJ MOKe OYTH BHUKOPUCTaHMW [UIS aBTOMAaTHU30BaHOI
Bepudikamii (akTiB y BIIKpUTHUX JKepenax. MeToawKa JJ03BOJSE IMIBUIAKO 1IeHTU(DIKYBAaTH
MOTEHIIIHHO MaHIMYJISATUBHI JaHi, 0 € aKTyaJbHUM JJIS )KYPHATICTUKH, ICTOPUYHUX JOCIIKEHb 1
00poTHOU 3 Ae3iHGOpMAITIETO.

VYHIKaIBHICT METOIY TAKOX IOJISITA€ B 3aCTOCYBAHHI arperoBaHoi OIIHKU JJOCTOBIPHOCTI, 10
BPaxOBY€ pe3yIbTaTH PI3HUX MOBHUX MOJIENIEH, 110 3a0e3reuye OibII BUCOKY TOYHICTh Ta CTIHKICTh
JI0 MOKJIMBHX MOMMJIOK OKpeMuX Mmojeneil. [led miaxin m03BoJiss€ YHUKHYTH YIEPEPKEHOCTI, 1110
MOKE€ BUHUKHYTH uepe3 crenudiuyHi oOMeXeHHs KOXKHOi OKpeMoi MOofewi, Ta 3a0e3nedye OuIbI
HaJIHY IEpeBIPKY (aKTiB.

3anpornoHOBaHa METOJMKA JICMOHCTPYE MI€BICTh Y BHSIBICHHI MOTCHI[IHHUX HEMpPaBIUBUX
¢dakTiB, MiABUILYIOYM JOCTOBIpHICTH iH(OpMamlii y BIIKpUTHX Kepenax. Bona Binkpuae
NEePCIEeKTHBH I aBTOMAaTH3AIli1 mepeBipku iHpopmarii y BITKPUTHX JDKepenax, 30KkpeMa Bikinesii,
Ta MOKe OyTH aJjanToBaHa JUIsl aHAJI3y 1HIIUX BHUJIIB TEKCTOBUX JIAaHUX.
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VJIK 004.8

Ma3zypeus O.B., OBuapyk O.M., (Xuenvruysvkutl HayionanvHuil yHieepcumem, m. XmeavHuybKui,
Yxpaina)

JTATHOCTYBAHHSI ITPOSBIB IOCTTPABMATHYHOT'O CTPECOBOI'O PO3JIALY
3A HEUPOMEPEXEBUM AHAJII30OM TEKCTOBOI'O KOHTEHTY

Anomauisa: 3anpononosano nioxio 00 0ia2HOCMYBAHHI NPOAGI& NOCMMPABMAMUYHOZ0 CHPECOB8020
PO31A0Y 3G HElPOMePeNCesUM AHALIZ0M MEKCMOB8020 KOHMEHMY, KUl 3abe3neuye mpauc@opmayito 6XioHux
Oanux y euensioi mekcmy 6 pe3yivmam y 6uisaodi oyiHku umogiprocmi npossie IITCP y konmenmi
Kopucmyeadis. Po3pobnena apximexmypa HeupoHHOI Mepedici noKazana 3HauHe NOKPauwjeHHs pe3yavbmamis
NOPIBHAHO 3 IcHYrOYUMU aHnanoeamu. llicna HasuauHa mooeni Ha 3anponoHO8aHOM) Habopi Oauux 0Y10
OMpUMAHO MOYHICMb NOHAO 85%.

Knrouoei cnoea: nocmmpasmamuunuii cmpecogutl posiaod, HetipOHHA Mepedica, 00pobKa npupooHoi
Mo8u

Abstract: Approach to diagnosing manifestations of post-traumatic stress disorder using neural
network analysis of textual content is proposed, which provides the transformation of input data in the form
of textual data into a result in the form of an assessment of the probability of manifestations of PTSD in user
content. The developed neural network architecture showed a significant improvement in results compared to
existing analogues. After training the model on the proposed data set, an accuracy of over 85% was obtained.

Keywords: post-traumatic stress disorder, neural network, natural language processing
[TocranoBka npobaemMu

Ha Tni ocraHHIX mofil, SKi BUKIMKAIOTh 3HAYHUNA CTPEC, TAKUX SK BIWHHU, KaTacTpopu Uu
comianbHl KOH(IIKTH, CIIOCTEPIra€TbCsl 3POCTAaHHSA BHUMAJAKIB IMOCTTPAaBMAaTUYHOTO CTPECOBOIO
posnany (IITCP) cepen Hacenenns [1, 2]. Tpaaumiiiti miaxou 10 AIarHOCTHKH YaCTO BUSBIISIOTHCS
HEIOCTaTHHO €(EeKTUBHUMH, OCKUIBKH MOTPEOYIOTh 0€3MocepeHhOr0 KOHTAKTY 3 MAIliEHTOM Ta
TPUBAJIOTO Yacy Uil OLIHKU HOTrO CTaHy.

VY 3B’s3Ky 3 TUM, 1II0 TEKCTOBA 1H(OpPMAILLis CTa€ 1eAai JOCTYIHIIIO, BAHUKAE HEOOX1IHICTh
y CTBOpPEHHI METOOJIOTii (hOpMyBaHHS HAaBYAILHMX HAOOpPIB JaHUX, SKa 3a0€3MeUUTh BUCOKY
TOYHICTh Ta YYyTIUBICTh Mojenelt no TexcroBux mpossiB I[ITCP [3]. Ile mo3Bonuth He nuiie
HiABUIIUTH €(EKTUBHICTh J1arHOCTUKH, ajle i CIPUATHME CBO€YACHOMY BTPYYAHHIO Ta MiATPUMII
0ci0, SKI MepeXWId TpaBMAaTU4HI MOJil. B ymMOBax MIBUJIKUX 3MiH y COLIAJbHO-TICUXOJOTTYHOMY
CEpEe/IOBUIIl BUKOPUCTAHHS HEUPOHHUX Mepex st BuspieHHS o3Hak [ITCP crae BaximBum i
aKTyaJIbHUM 3aBJIaHHSM, SIK€ CIIPsIMOBaHE Ha 3a0e3MeueHHs IU(POBOTO IICUXOJIOTIYHOTO 100pO0yTY
CYCI1IbCTBA.

TakuM 4YHMHOM, aKTyalnbHHM € THUTaHHS aBTomarm3anii miarHoctuku [ITCP Ha ocHOBI
TEKCTOBOT'O KOHTEHTY, 3a0€3Meuyroun Mpu IbOMY CTIMKICTh 0 nMOMMIOK y po3pizHeHH1 [ITCP ta
IHIIAX TICUXIYHUX po3niadiB. L[poro MoKHa MOCATTH 3a JONMOMOTO HEHPOHHHX MEpEX MHUITXOM
CTBOPEHHSI HABYAJILHOTO HA0OpYy JaHUX, IO BKJIIOYAE TEKCTH 3 SICKPAaBO BUPAKECHUMHU MPOSIBAMU
[ITCP sk 1inboBy KaTeropiro, a TaKOX TEKCTH 3 1HIIMMH NCUXIYHUMH po3aziaMu Ta 0e3 HUX — K

KOHTPOJIBHY TPYILY.

AHaJi3 ocTaHHIX MyOmiKaIii

Hapasi mmpoko 3acTOCOBYIOTBCS Taki HHU(POBI IHCTPYMEHTH, SK BipTyajbHa peajbHICTD,
HelipodinOex, HOCUMI TPUCTPOi, MOOITBHI JTOAATKH Ta MallMHHE HAaBYaHHS JJs JAIarHOCTHKH Ta
nikyBanHs cumntoMiB [ITCP [4]. Arami3 DOCHiIKeHb IMOKa3aB, IO BIpTyaJllbHa PEATBHICTh €
edeKTUBHUM MeToJoM JiKyBaHHs 6oroBoro I[ITCP, Toxi sk pe3yapTaTy BUKOPUCTAHHS MOOLITBHUX
JOJaTKIB 1 HelpodinbeKy 3aMuIIaThCsi 0OMEXKEHUMHU Yepe3 HeBeNUKi BUOIPKH Ta METOOJIOTIUHY
HEOJHOPIIHICTh. MoJieni MallIMHHOTO HaBYaHHA JIEMOHCTPYIOTh MOTEHIIIaJ Y BUSIBIIEHHI CHMITOMIB
[ITCP 3a nanumu 31 cMapT@OHIB 1 HOCUMHUX MPUCTPOIB, OJHAK JUIs iX KIIHIYHOTO 3aCTOCYBaHHS
noTpiOHa cTaHIAPTH3ALlIS TPOIEAYDP 300py JaHHUX 1 MOJCITIOBAHHS.

Hocnipkenns [5] posrasgae MoBY SK MOXIMBHK jaiarHocTuyHuii 6iomapkep IITCP,
BUKOPUCTOBYIOUM /1aHi Bix 148 ocil, siki cranu sxeprBaMu TepakTiB y [Tapmxi 13 nucromana 2015
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poky. [HTepB 10, mpoBeaeHi uepe3 5-11 MicAIliB micist MOii, OXOTUTIOBAIA PECTIOH/ICHTIB 31 CXOKUMHU
COILIAIbHO-€KOHOMIYHUMH yMOBaMHU. Y  JOCHI/PKEHHI 3aCTOCOBYBAJAacs MIXIHCIUILTIHAPHA
METOJIOJIOTIS, sKa IOEMHyBaja TICUXIaTpiro, JIHTBICTUKY Ta OOpPOOKY MPUPOIHOT MOBH IS
BCTAHOBJICHHS 3B’ 513Ky Mk MOBHUMH ocoOnuBocTsmu Ta [ITCP.

Pesynpratn nokaszanu, mo kiriHivyHuA ncuxiatp gocar AUC 0,72 npu piarnoctuui [ITCP, mo
3icTaBHO 3 pesynbratamu anketryBanHa (AUC = 0,80). Mojenbp MallMHHOTO HaBYaHHS MOKa3aja
AUC 0,69, a monens rnubokoro HaByanHsi — AUC 0,64. Y mocnipkeHHI TaKoXX BPaxOBYBAJIUCS
3MillyBaJIbHI (paKTOpH, L0 BIUIMBAIOTH HA PE3yJIbTaTH, BCTAHOBIIIOBAIUCS 3B’SI3KM M)XK MOBHUMH
0cOo0JIMBOCTSIMH Ta cuMiiToMmamu DSM-5, a Takox rmoeIHyBalIncss aBTOMaTU30BaH1 METOIU 3 SIKICHUM
aHaJI30M.

Merta poOoTH Ta MOCTAaHOBKA 3aB/IaHb

MeTor poOOTH € MIarHOCTYBAaHHS MPOSBIB MOCTTPABMATHYHOTO CTPECOBOTO pPO3Naay 3a
HEeWpPOMEpEeKEBUM aHAJTI30M TEKCTOBOTO KOHTEHTY, LI0 3a0e3Ieuye epeTBOPEHHS BX1THUX TaHUX Y
BUTJISIII TEKCTY B pe3yJIbTaT y BUTIISAI oLliHKK WMOBipHOCTI 1posiBiB [ITCP y KOHTEHTI KOpHCTYBayiB.

Buxknan ocHoBHOTO MaTepiany

MeTo ~ iarHOCTYBaHHS  MPOSIBIB  IOCTTPAaBMATHYHOTO  CTPECOBOTO  poO3jIagy  3a
HEHpPOMEPEIKEBUM aHATiI30M TEKCTOBOTO KOHTEHTY 0a3yeThcs Ha HaBYaHHI HEMPOHHOI Mepexi 3
BUKOPHCTaHHSAM CIIEL[iaJIbHO CTBOPEHOI'0 HaBUalbHOTO Habopy nanux. lleit Habip 3abesmeuye
BUCOKY CTIHKICTh 10 momuikoBoro BuseieHHs [ITCP uepe3 3MinryBaHHs 3 iHIIMMHU TICUXIYHUMH
posnagamu. J{s aHamizy TeKcTiB Oyia 3acTOCOBaHa HEHpPOHHA MepeXa, IO BKIIOYA€E KBAHTOBUI
mrap. Cxema apXiTeKTypu Mepexi s IarHOCTYBaHHS NPOSBIB MOCTTPABMATUYHOTO CTPECOBOTO
po371a/1y 3a aHaIi30M TEKCTOBOTO KOHTEHTY Ipe/CTaBiIeHa Ha puc. 1.

3anponoHOBaHMN MiAX1J 1O JAIarHOCTYBAaHHS HPOSIBIB MOCTTPAaBMaTHYHOI'O CTPECOBOIO
po3naay 3a HeHpOMEpEKEBUM aHATI30M TEKCTOBOTO KOHTEHTY 3abe3neuye TpaHc(hopMaliito BXiTHIX
JAHUX y BUIVIII TEKCTY B Pe3yibTaT y BUINIAAL OLIHKM MMoBipHOCTI nposBiB IITCP y koHTeHTi
KopucTtyBauiB. Ha mepmiomy erami 37iHCHIOETBCS morepeaHsi oOpoOKa TEKCTIB, BKJIIOYAIOUU iX
TOKeHi3amito. TeKcTu MmepeBipsoThCs Ha JOBXKHMHY 1 HasBHICTh AaHuX. IIpu 1pomy 36epirarorbes
pO3AUIOBI 3HAKH, €MOJ31 Ta I1HIIl €JIEeMEHTH, SIKI MOXKYThb MICTHUTH 3HauyIly iH(opMaiioo At
BusiBieHHss [ITCP. Ilpouec TokeHi3alii BHUKOHYEThCS 13 3aCTOCYBAaHHSM TOKEHi3aTopa, IO
BUKOPHCTOBYBABCSI ITiJ] YaC HABYaHHS MO/IEITI.

Ha npyromy erami mpoBOAWTHCS aHANI3 TEKCTY 3a JIOMOMOTOI KOHTEKCTHO-OPIEHTOBAHOT
HelipoMeperki Ha OCHOBI apXiTeKTypH TpaHchopMmepa, cripsiMoBaHol Ha BUsiBiIeHHs npossis [ITCP.

Bxigauit mwap (Input) momeni Bu3Hauae Qopmar gaHux 1 mae posmipHicte 2000, 110
BIJIMIOBiIa€ TOBXKUHI BEKTOpa CIiB Juist aHami3y. Ha pucynky nei map He BigoOpaxkeHo. [loganbii
HIapy BKITIO4aroTh mibHI (Dense) mapwu, 1110 3’€1Hy0Th yci HEHPOHU MONEPEIHBOTO MIAPY 3 KOXKHUM
HEeHpoHOM moToyHOro. Dropout-iap BHMAagKOBO J€aKTHBYE MEBHY KiJIbKICTh HEMPOHIB y mHpolieci
HaBYaHHS, [0 3MEHIIYyE DPH3UK TIepeHaBUaHHS MOJENi, 30KpeMa sl JaHOTO JOCIiKCHHS
BUKOPUCTOBY€EThCS 3HauUeHHs 70%.

Buxigamit map Dense 13 oHUM HeMpOHOM BUKOPHCTOBYEThCA Ui 3a/adi Kiacudikaiii Ha
JIBa KJ1acu. 3aCTOCOBYEThCS (QYHKIIISI akTHBaLlii Sigmoid, mo cTuckae pesynbrar y mexax Big 0 1o 1,
10 1/1eaTbHO MAXOAUTH JIJIs1 MOJIeIOBaHHs WMOBipHOCTI TiposiBiB [TTCP.

Jl1s 3a0e3nedeHHs! TOYHOCTI 11IarHOCTUKH Ta 3MEHIIeHHsI iMoBipHOCTI 3MinryBanHs [ITCP i3
CUMITOMAaMH 1HIIMX MCUXIYHHUX 3aXBOPIOBaHb OYJIO CTBOPEHO HAaBUAJIbHUI HaOlp JaHUX. Y HbOMY
[1JIbOBA KAaTETropist MICTUTh TEKCTH 3 BUCOKUM piBHeM MposBiB IITCP, a KOHTpoibHA — BKIIIOYAE SIK
tekctu 0e3 o3Hak [ITCP, Tak i TekcTH, OB’ sI3aH1 3 IHIIMMHU MICUXIYHUMHU PO3JIAJTAMHU.

®opmyBaHHS HOTO HAOOPY 3A1MCHIOBATIOCS MIISAXOM KOMOIHYBaHHS Ta BiAOOpPY JaHUX 13
HasBHUX 0a3 [6], Takux sk «AyaPTSD» [7] Tta «HumanStressPrediction» [8], po3mimenux Ha
mwiatdopmi Kaggle.
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Input shape: (None, 2000) | Output shape: (None, 32)

Dropout

Input shape: (None, 32) | Output shape: (None, 32)

QuantumLayer

Input shape: (None, 32) | Output shape: (None, 2)

Dropout

Input shape: (None, 2) | Output shape: (None, 2)

Input shape: (None, 2) | Output shape: (None, 32)

Dropout

Input shape: (None, 32) | Output shape: (None, 32)

Input shape: (None, 32) | Output shape: (None, 1)

Puc. 1. ApxiTekTypa HelipoMepe:Ki 1IsI aHAJI3Y TEKCTOBOI0 KOHTEHTA 1A AiarHocTyBaHHs nposisiB [ITCP

EdexTuBHICT METOY J1arHOCTYBAaHHS MPOSIBIB MOCTTPABMAaTHYHOT'O CTPECOBOTO PO3JIaay 3a
HEHpPOMEPEIKEBUM aHAI30M TEKCTOBOTO KOHTEHTY Oylla OIliHeHa 3a JIONOMOTOK XMapHOi
iatdopmu Google Colab. Ha pucynkax 2 1 3 nmpogemonctpoBadi ROC-kpuBi A1 1BOX BapiaHTIB
napameTpiB Dropout — 60% 1 75%.

Receiver Operating Characteristic

True Positive Rate

e —— ROC curve (area = 0.87)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Puc. 2. ROC-kpuBi HelipoHHOI Mepe:xi, BiicoTok iHridyrw4ux Heiipouis 60
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Receiver Operating Characteristic

True Positive Rate

e —— ROC curve (area = 0.88)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Puc. 3. ROC-kpuBi HeliponHoi Mepe:xi, BiicoTok iHridyrounx HeiipoHis 75

[licnis HaByaHHA MOJENI Ha 3alpPOINOHOBAaHOMY HAOOpi AaHWX OyauW OTpPHMaHI Taki
pe3ynbTaTi: TouHicTh (Accuracy) — 0.85, Tounicts nependayens (Precision) — 0.87, i mmoma mif
kpuBoto (AUC) — 0.88. HaBuanus 3aiiicHioBasiocs npotsirom 100 enox i3 3aCTOCYBaHHSIM MEXaHi3My
paHHIX 3yNUHOK JUIS YHUKHEHHS NepeHaBYaHHs Ta 30epekeHHs HalKpamoi Bepcii Moaeni. Po3mip
HaByanbHOI mapTii (batch size) cranoBuB 64, a cnoBHUK oxoruntoBa 2000 TOKeHiB.

BUCHOBKH

Po3pobnena apxiTekTypa HEMpOHHOI Mepexi MoKa3zaja 3HauHEe IOKpAILEHHS pPe3ysbTaTiB
HOPIBHSAHO 3 iCHyIOuMMH aHajoramu. Lle ocoGmmBo BaxkmuBo g 3anau BussieHHs [ITCP y
TEKCTOBOMY KOHTEHTI. BCTaHOBIIEHO MiABUIIEHHS TOYHOCTI 1 3MEHIIIEHHS PU3HUKY CILTyTYBaHHS 3
IHIIMMHU TCUXIYHUMHU poznanamu. OJHaK MeTOJ /AIarHOCTYBAaHHsS HPOSIBIB MOCTTPaBMaTHYHOIO
CTPECOBOT0 PO3Jaay 3a HEMPOMEPEIKEBUM aHAII30M TEKCTOBOTO KOHTEHTY Ma€ MEBHI OOMEXEHHS:
BiH 3aCTOCOBYETBHCS JIMIIE /0 TEKCTIB aHININHCBKOIO MOBOI. Lle oOMexeHHs MOXHa MOoJoJaTh
[UIIXOM PO3IIMPEHHS HABYAIBHOIO HA0OPY JaHUX TEKCTaMU 1HIIMMU MOBaMH.

[Monanbmii gocmikeHHs: OyIyTh 30cepe/KeHl Ha pO3IMIMPEHHI HA0Oopy HAaBYAIBHUX JAaHUX 1
TECTYBAaHHI aJIbTEPHATUBHUX HEHPOMEPEKEBUX APXITEKTYp AJIS MiJBUILEHHS €(EeKTUBHOCTI MOJEII
Ta TOYHOCTI BusiBeHHs cumntomiB [TTCP.
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VJIK 004.4

MaptunoB A.1O., Pagiok ILM. (Xuenvnuysvkuu nayionanvuui ynisepcumem, m. XmenoHUYbKUL,
Yxpaina)

IITYYHUHA ITHTEJEKT IK OCHOBA U151 PO3III3HABAHHS BILIA 11O
PAJJIOCUT'HATYPI

Anomayia: Y cmammi npedcmasneni napy npocmux HeupoHHUX Mepexc 0isl pO3NI3HABAHHA padioCUeHANi8 No
muny mooyasyii uu maninynayii. Bubpaewiu kpawgy i3 HUX My NOKpawuiu it niOHAIAuMySanHsIM KIIbKOCMI PIGHI8 ulapie
ma ix napamempu. Taxooic 6ydemo 36epmamu ysazy na sampeOysanuil yac 0 HA8UAHHS MA Pe3YTbMamu 00CAIONCEHb.

Knrouosnl cnosa: maninynsyii, nokpaujenns, NiOHAIAUWIMY8AHH, KIIbKICMb Wapie, napamempu, 4ac HAG4aHHs,
pe3yrbmamu 00CIi0NHCEHb.

Abstract: The article presents a pair of simple neural networks for recognizing radio signals by the type of
modulation or manipulation. Having chosen the best of them, we will improve it by adjusting the number of layer levels
and their parameters. We will also pay attention to the required time for training and research results.

Keywords: manipulations, improvements, fine-tuning, number of layers, parameters, training time, research
results.

Berym.

UYepes BeNHKY KiTbKICTh BUPOOHHKIB Ta TUTIB BOpokux BIIJIA mocrae mpobiema po3mizHaTH
cBiii-uyxuit BITJIA Ha Qoni aktuBHHX O0ioBuX 1iii. Lle BinOyBaeTbcs 32 yMOB, KOJU TepeBakHA
OLIBIICTh CydacHOT PO3BIIKU Ta ypaXKeHHs Bi0OyBa€eThes 3a paxyHok FPV-aponis [1-3]. Busnauntu

tunt BITJIA MoHa 1 3a CHeKTpalbHUM PaJliOCHTHAIOM orepaTopa [5] 9u BiJeOCHTHATY CamMoro
BITJIA [6-9].

3anponoHoBaHUM MixXisx,

3anpornoHoBaHui MeToJ BuUsBICHHs Bopokoro BIIJIA 3ampornonoBanuii Bmnepiue. Bix
OXOIUTI0E B cO01 LU@POBUI pajionpHiimMau, sIKUN NpUMae CUTHAJIM KEpyBaHHS oleparopa 4
BifeocurHan camoro BITJIA, komm’roTep 4n MiHI KOMII'IOTep Ha sSIKoMy OyJe po3TalloBaHa cama
HEHpOHHAa Mepeska 13 po3Mi3HaBaHHAM THUITYy PaJlOCUTHANLY Ta 1HAMKATOP, KU Oyae CBITYUTU IPO
HasBHIcTh BITJIA.

VY mpoueci NoOUIyky HEWpPOHHMX MEPEX MJs PO3Mi3HABaHHS PaJiOCUTHaNIB Oyino 100yTO
OCHOBHMX II’ITh THIIB HEHPOHHMX MEPEKMOKIMBHUX JJIS PO3IMi3HABAHHS pajiocUrHaiiB. I3 HHMX
OynemMoBHOpaTH ONTHUMAJBHINIY 1 BXKe MMOKpAIlyBaTH il 3MIHOIO KUIBKOCTI IIApiB Ta iX mapaMeTpiB
METOJIOM Tepebopy.

Posniznatu BIIJIA nianyeThCst 32 HACTYTHUMU KPOKAMU:

bnok 1. HaBuanns 3a HaOopoM J1aHUX.

Kpox 1.1 3anyckaemMo HEMpPOHHI Mepexi Ta TPEHYEMO 3T1JHO HAIIOro Habopa JTaHHX.

Kpox 1.2 BUBOIMMO pe3ylnbTaT TPEHYBaHb Yy BHUIVIAAI «Marpuili IUTyTaHUHW». SIKIIO
pe3ynbTaTH 330BIIBHI — MMEPEXOIUMO JI0 OJIOKY 2

bnok 2. OtpuMyeMo CUTHAT [Tl TOPIBHAHHS

Kpox 2.1 Otpumyemo paniocurHai 3 edipy KepyBaHHS oliepaTopa 9 BiIEOCUTHAI i3 CAaMOTO
BIUIA

Kpox 2.2 TIpuBoaumo curHal y BiAoBiAHY GopMy Ut Helpomepexki

bnok 3. BuBeieHHs pe3ynbTatiB Ui IPUHHATTS pillleHb

Kpox 3.1. TlopiBHSHHS pe3yabTaTiB i3 6a3010 ganux mo tunam bITJIA (o xapakrepucTukax
MOJTYJIiB, SIKI MOKYTh BUKOPHUCTOBYBATHUCS B HUX)

Kpox 3.2. BuBenenns indopmartii i3 AMOBIpHICHIM 3acToCyBaHHS 1eBHOTO TUITY BITJIA)
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Onuc paHux.

3a ocHoBy Oyno B3sTo dataset«RadioML 2016.10A» 11 moxynauiii, Oyno moGaBieHO 1e
OJIMH THIT MOJYJIALIT «aipoTokoi LoRay Ha sikomy 1 mpaiioroTh Baxki s npuayiieHds bITJIA.

VYr1BopeHuii HoBHiA dataset Mmae HACTYIHI 3HAYCHHSL:

KinbkicTb 3pa3kiB Mmoayssiiii 12;

Kinbkicts 3paskiB B ogaomy Bui 1000;

Po3mipnicTs koMmioHeHTa 128x128;

KinbkicTs piBHiB SNR 20;

3aranpHa KiIbKicTh 3paskiB 240000.

IIpouneaypa HaBYUaAHHA MOJEi.

HaBuaemo Heiipomepexy 3a Habopom nmanux. Ilicnmst TpeHyBaHb MporHanu e pa3 Habip
naHux, skuil 0yne Ha Bci 100% ckmanarvcs i3 HaBuaHHS 1 TUTBKM HaIll BX1IHUHA CUTHAJI 3alTMCaHUN
U(ppPOBUM IpUKMaYeM I01aBaTUMEMO Ha BXiJ] HA PO3IMi3HABAHHSA /0 SKOI MOAYJIALII BiTHOCUTHCS
nei 3anmucaHuii pagiocursan. Ha Buxoai oTpuMaeMo WMOBIPHICHI 3HAQUYEHHS LOTO CHTHATLY Y
BiJICOTKOBOMY BiJHOIIECHHI 10 THITY MOIYJIsii. [li3HiIIe MOpiBHIOEMO XapaKTEPUCTUKU ICHYIOUHX
MOJIyJIiB Tepenayi paJlOCUTHANIB 3 HAlIUM PO3Mi3HAHUM CHTHAJIOM 1 OTPUMYEMO HMOBIpHICHE
3aCTOCYBaHHA MEBHOTO THITY IIepeaBayda Ha gociiukyBaHomy BITJIA.

Omnwucani 5 CTpyKTYp HEHPOHHUX MEPEX K1 OyIeMO TOCTiKYBATH:

1. BASIC = Conv2D(64, size=(1, 3), activation="relu’, input_shape=(H, W,
C)),Dropout(0.5)), Conv2D(16, size=(2, 3), activation="relu’), Dropout(0.5), Flatten(), Dense(128,
activation="relu’), Dense(len(modulation), activation="softmax’), Dropout(0.5)]

2. DEEP = [Conv2D(64, kernel_size=(1, 3), activation="relu’, input_shape=(H, W, C)),
Dropout(0.6), Conv2D(64, kernel_size=(2, 3), activation="relu’), Dropout(0.6), Conv2D(80,
kernel_size=(1, 3), activation="relu’), Dropout(0.6), Conv2D(80, kernel size=(1, 3),
activation='relu’),  Dropout(0.6), Flatten(), Dense(128, activation="relu’),  Dropout(0.5),
Dense(len(modulation), activation="softmax")]

3. LSTM = [ZeroPadding2D(0, 2), Conv2D(64, (1, 5), activation="relu’), Dropout(0.2),
ZeroPadding2D((0, 2), data_format="channels_last), Conv2D(64, (1, 5), activation="relu"),
Dropout(0.2)(conv_2), Concatenate(axis=2)([drop_1, drop_2]), list(np.shape(merge)), concat_n,
concat_h, concat_ w, units = np.shape(merge), dimensions = int(concat_h)*int(concat_w),
Reshape((units,  dimensions)),  Bidirectional(LSTM(64)), Dense(128, activation="relu’),
Dense(len(modulation), activation="softmax")]

4. CNN = [ZeroPadding2D(0, 2), Conv2D(64, (2, 3), activation="relu’),
data_format="channels_last', input_shape=(H, W, C)), Dropout(0.5), Conv2D(80, (1, 3),
activation="relu’, data_format="channels_last"), Dropout(0.5), Flatten(), Dense(128, activation="relu’),
Dense(len(modulation), activation="softmax")]

5. VTCNN2 = [Reshape([1]+in_shp, input_shape=in_shp)), ZeroPadding2D((0, 2)),
Convolution2D(64, (2, 3), activation="relu", initializer="glorot_uniform’), Dropout(0.0005),
ZeroPadding2D((0, 2)), odel.add(Dropout(0.0005), Flatten(), Dense(128, activation="relu’,
kernel_initializer="he_normal’), Dropout(0.0005), Dense(len(modulation),
kernel_initializer="he_normal’), Activation('softmax’)

Reshape([len(modulation)])]

HeiiponHi Mepesxi TpeHyeMo y cykymHOCTI ycix piBHiB SNR a He okpemo. SNR = [-20, -18, -
16, -14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18].
PesyabsTaTn.

s veiiponnoi mepexi Ty «DEEP» Ha 50 ermox npuBeneHi B pucyHkax 1 — 1o TO4HOCTI,
PUCYHOK 2 - IO BTpaTax, 3 — MaTpHILs IUTyTaHUHU.
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Pucynox 1 — 3nauenHs ToyHocti HeifiponHoi Mepexi « DEEP» nporsirom 50 - erox.
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Pucynok 2 — 3nauenns Brpat HelipoHHOT Mepexi « DEEP» nporsirom 50 - enox.
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Pucynok 3 — Marpuust minyrannau HeliponHoi Mepexi «DEEP» 3a 50 - erox.
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Ta6muist 1 — Tunu HEHPOHHUX MEPEXK BUPAKEH1 Y BIICOTKOBOMY MPECTaBICHHI PO3ITi3HABAaHb
paslioCUTHAJIB MiCIsl TPEHYBAHb 3a KUIBKICTIO €MOX.

Tun BASIC DEEP LSTM SNN VTCNN2
Mepexi
5 8,05 16,54 16,49 16,11 34,06
10 8,13 - 31,97 16,19 48,06
20 8,06 N 54,61 16,15 47,55
50 93 44,49 56,5 20,13 52,10
500 - - - - 50,46

Tabmuus 2 — Tunu HEUPOHHUX MEPEK BUPAXKEHI y OTpeOdi B yaci (CeKyHAM) JUIsl TPEHYBaHb 3a
KUJIBKICTIO €T10X.

Tun BASIC DEEP LSTM SNN VTCNN2
Mepexi
5 387 1206 1001 200 120
10 694 - 2085 346 278
20 1375 - 8109 762 514
50 7344 19698 18249 1844 5284
500 N - N - 20303

Tabmuns 3 — [MokazHuk 3aTpeOyBaHOrO Yacy A0 i1 KIJIbKOCTI €MoX, AJisl TPEHYBaHb 10 TUITY
HEHPOHHOI Mepexi.

Tun BASIC DEEP LSTM SNN VTCNN2
Mepexi
5 1,29 4,02 367 0,67 04
10 1,16 - 348 0,58 0,46
20 115 - 6,76 0,64 043
50 245 657 6,08 0,61 1,76
500 - - - - 0,68

ITo pesynpraTax HaBeneHHX B Tabmuui 1 6aunmo, mo «BASICy» Tun HEHpOHHOI Mepexi 1mo
TOYHOCTI PO3MI3HABAHHS PAJIOCUTHAIIB JOCUTh Majla a TOMY HE€ MIAXOAUTh Ui IOAAJIbIIUX
JIOCJIIIIB.

[To pesynbrarax mpuBefaeHuX B Tabmuill 2 6aunmo, mo «DEEP» Tunm HelipoHHOI Mepexi
3abupae 6araro 4acy Jisi TpeHyBaHb, a TOMY ii BIIKMIa€MO 13-3a HEIOCTATHHOT MOTYKHOCT1 HAIIIOTO
00J1aIHaHHS.

Jna  wHeliponHoi Mepexi tuny «LSTM» MH crnocTepiraeMo TE€OMETPUYHHMM  pICcT
3aTpeOyBaHOTr0 Yacy Bijl KITBKOCTI €mox (3riHO TabauIli 2) ajie i picT po3Mi3HaBaHOCTI paIiOCUTHATY
(3rizHO TabmMmi 1).

Jlns HelipoHHOT Mepexi TUIy «SNN», 3riIHO TabauIll 2, MU CIIOCTEPIraeMo JIiHIIHY piBHICTb
3aTpeOyBaHOTO Yacy JJIg TPEHYBaHb ajie BiJICOTOK JOCUTh Maiauil. MOXIMBO MpU TpEeHYyBaHHI 01715
1000 yu 5000 Mu 106’ eMOCS BiICOTKOBOTO 3HAUEHHS OLTBIIIE 3 75 aje MOKH HEeAOCTaTHS OTYKHICTh
HAIoro o0JaHaHHs HE J1a€ 3MOTY II€ TIEPEBIPHUTH.

Jns HeliponHoi Mepexi Tuny «VTCNN2y, 3rinno Tabauui 3, Mu 6auuMoO aHOMAO IO 1@
3HaueHHs OunblIe ogHoro. [1oTpiOHO KOCHIINTH 1€ JeTallbHIIIE.

B3sBiu 3a ocHOBY et Tun Helipomepeski Takuid ik « VTCNN2)» 13 HanamTyBaHHSIM ILApiB
MO’KHA JIOCSTTH Kpalux pe3ynbrariB. Och mapy 3MiH 1IapiB Ta pe3yabTaTH oOuucieHb Ha 50 emnox
MpeJICTaBIeHI B Tabuuili 4.

Tabnuus 4 — CTPpYKTYpH IIapiB U1 HEHPOHHOT MEpexi.

00
03

Hassa mopeni

ZeroPadding2D((0, 2)) + |+
Convolution2D(64,(2,3),Activati

12
14
64
+(128
+ | 256
+1512

+ | sigmoid | + | 08

on="relu",initializer="glorot_unif | + | + + | 8138 § o
orm’)
Dropout(0.0005) + | + + | + + | + | + ] +
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Dense (128, activation='"relu’,
initializer="he_normal’)
Dropout (0.0005) + |+
Flatten() + |+
Dense (128, activation='sigmoid',
initializer="he_normal’)
Dropout (0.0005) + |+ |+ + |+ ]+ ]+ ]|+
Dense (len(modulation),
initializer="he_normal’)

ZeroPadding2D((0, 2)) + |+ |+ + ]+ +«]+]+«7]+
Dropout(0.0005) + + + |+ |+ + ] +
Flatten() + + ¥ | + | + | + | +

Dense (128, activation="relu’, . . =S I - BN
initializer="he_normal’) N Q| B| 8
Dropout (0.0005) + |+ ]+ ] ] +]+
Flatten() o+ |+ |+ |+ |+ |+
Dense(128, ctivation="sigmoid’, sl el +lgsl + 18l o &
initializer="he_normal’) N a | b |
Dropout (0.0005) + | o+ |+ + |+ + ] + ] +
Flatten() + + + + + + + T
Dense(128, activation="relu’, N T =S I - BN
initializer="he_normal’) N a | b |
Dropout (0.0005) + |+ [+ + | +
Flatten() 1+ ] + 1 + | +

g+ 888

Activation + + + + L |lEgegsgss
('Softmax') N olnon o g
Reshape ([len(modulation)]) + |+ |+ + |+ ]+ ]+ ]|+
model.compile (loss="categorical . N N P R

_crossentropy',optimizer="adam’)
model.build (input_shape=
(None, H, W, C))
summary()

+
+
+
+
+
+
+
+
+

Pesynbrar po3miznaBanus y %

UYac 3arpauenuii qns HaBuanus B
CeKyHJax

7556 |51,42| +
6872 |53,88| +
133 (40,78| +
306 (44,44| +
4808 |35,47| +
2670 (33,01 +

1887 (52,37| +
6444 |51,46| +
1334 18,38 | +

BI/I3HaT-II/IJ'II/I OHTI/IMaJ'IBHy JJIA HAINUX ITOAdAJIBbIINX HaHpaIHOBaHB.
BucHoBku.

3a OCHOBY JUIsl Halloi HEHPOHHOI MEpexi BI3bMEMO HEMpOMEpexy 13 TaKOK CTPYKTYPOIO
mapiB mig Ha3zBowo «00». BigcoTok po3mizHaBaHHs Oubinii B 50 Ta 3arpeOyBaHuil yac cepeaHii
BITHOCHO I1HIIINX.

[Tonanpma poboTa 6yae 3ocepekeHa Ha 300pi XxapakTepucTHK nepenasadiB aias BITJIA ta
iXH1 0COOJMBOCTI KE€pyBaHHS (YaCTOTHU Ta THIH MPOTOKOJIB, MOAYJSIII, MOXINBICTh CTPUOKIB IO
YaCTOTi, MOXKJIUBICTD MiJJCTPOIOBAHHS CUTHAIY JI0 PIBHS LIYMIB TOILIO).
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MeabnukoB O. FO., Jlenucenko B. O. ([ounbacvxka oepoicasna mawunobyodiena axademis, M.
Kpamamopcwk, Yrpaina)

ITPOI'HO3YBAHHSI 3MIHHU PIBHSI JIICOBOI'O BKPUTTS OKPEMOI'O JIICHUIITBA
3A JJOIIOMOI'OIO CYITYTHUKOBOI'O CEPBICY LANDSAT TA IITYYHUX
HEWMPOHHUX MEPEK

Anomauia: Poszenanymo npobremy po3paxyHKy pieHs JiCUCOCMI, Y MOMY YUCH — NPOSHO3V8AHMA 3MiHU
JC08020 BKpUmMMs 8 OKpemMomy JicHuymsi. 3pobneno nopisHauusa aicucmocmi 3a 40 poxie (1984 — 2024) cenuwa
Cnisaxiexka I3tomcokoco pationy Xapkiecvkoi obaacmi 3 GUKOPUCMAHHAM CYNYMHUKO8020 cepsicy Landsat. [ns
3aCmMOCy8aniss Memooy WMYYHUX HEUPOHHUX Mepedc CHOPMOBANO nepeniK 6XIOHUX PaKkmopis, wo MiCmams NOKA3HUKU
Ha 00paHill Oinanyi y 08a nonepeoHi poKu Ma Yi Hc NOKASHUKU HA CYCIOHIX OLNAHKAX (KOXCHe i3 3A8AHMANCEHUX
300padicenb 0bpanoeo richuymea po3nodineno Ha 9 keadpamis). CmeopeHo CKpunm Mo800 NPOSPAMYBAHHA MA AHALI3Y
oanux R, AKuil GUKOHYE pO3PAXYHKU, O0360JA€ GUSHAYUMU HAUKPAWY apXimeKmypy HeupoHHOi Mepedci ma Oinbu
epexmusHull Memod il HasuanHsl 0151 nesHo2o Habopy danux. Hasedeno pospaxynox ounamixu eupyoku Ha obpanomy
Keaopami (npocHo3 HA OCMAHHIU pIK 3a0e3neuye noxubky ¢ 9%). Ilicis uuciennux 3anyckie ckpunmy 3’sc08aHo, ujo
HAUKpawull pe3yiomam 3a06e3neyyc nepcenmpon 3 00HUM NPUXOBAHUM UAPOM 3 08OMA HEUPOHAMU Y HbOMY.

Kniouosi cnoesa: nicucmicmos, npocHo3yeanns, cynymuuxoei oaui, Landsat, neiliponni mepesici, nepcenmpon,
OUHAMIKA BUPYOKU, APXIMEKMYPA MePediCl, MEemo0 HABYAHMsL, AHANI3 OAHUX, NPOSPAMYBaHHs R.

Abstract:The problem of calculating the level of forest cover, including predicting changes in forest cover in a
separate forestry, was considered. A comparison of forest cover over 40 years (1984-2024) of the village of Spivakivka,
Izyum district, Kharkiv region, was made using the Landsat satellite service. To apply the artificial neural network
method, a list of input factors was formed, containing indicators on the selected site in the two previous years and the
same indicators on neighboring sites (each of the downloaded images of the selected forestry is divided into 9 squares).
A script was created in the programming and data analysis language R, which performs calculations and, allows
determining the best architecture of the neural network and a more effective method for its training for a certain data set.
A calculation of the dynamics of felling on the selected square is presented (the forecast for the last year provides an
error of 9%). After numerous runs of the script, it was found that the best result is provided by a perceptron with one
hidden layer with two neurons in it.

Keywords: forest cover, forecasting, satellite data, Landsat, neural networks, perceptron, deforestation
dynamics, network architecture, training method, data analysis, R programming.

B Vkpaini nutanHs 30epeXeHHs JICIB PeryiioeThCsl HU3KOK 3aKOHOJAaBUMX akTiB [1].
CTBOpeHHsI Ta BUKOPUCTAHHS CIEIiali30BaHOI0 MPOrpaMHOro 3a0e3NeueHHs A OLIHIOBAHHS
JicuctocTi, 00poOieHHs iHpopMalii mpo JIiCOBI HAcaJPKEHHS Ta BUSBJICHHS HECAHKIIIOHOBAHOI
BUPYOKH JIICY, IPOTHO3YBaHHS 3MIHHU JIICUCTOCTI B OKPEMOMY JIICHMIITBI MOK€ CTaTHU CYTTEBUM
MOMIYHMKOM B IIbOMY HaIpsIMKY.

ABTOpH po3poOUIM MporpamMHe 3a0e3NedyeHHs Uil PO3paxyHKY JICHCTOCTI Ta 00poOIeHHs
iH(popMalii npo JicoBi HacajkeHHs [2] Ha mpukiaai cenuma CriBakiBka B [3toMcbkoMy paiioHi
XapkiBcpkoi o6macri [3]. Takoxk Oyi0 3po0JaeHO MOPIBHSHHS JIICHCTOCTI 32 HU3KY POKiB [4-5], mis
yoro Oyno Bukopuctano pecypc Global Forest Watch (BcecBiths micoBa BapTa) [6] — BeOgoaaTOK
JUIE MOHITOPHHTY JIICOBOTO IMOKPUTTS IJIAaHETH B peaibHOMY Maciitabi yacy. HemomikoM 1poro
Be0JI0JIaTKy € HasBHICTh CYMYTHHUKOBHX 3HIMKIB TUIBKHU 32 13 pokiB, 10 2013 poky.

ABtopu pobotu [7] nmns JOCHIIKEHHA OOCSTIB MOpYIIEHb HaMeTy JEpeBOCTaHIB B
Vkpaincekux Kapmarax ynpomosxk 1984-2016 pp. BUKOpUCTaNM 4YacoBl psAM  300pakKeHb,
OTPUMAaHHUX 13 CYNYTHUKOBHX 3HIMKIB MpoekTy «Landsat» 13 3acrocyBaHHAM 3aco0y Bi3yamizarlii
«TimeSync». ABTopu po3paxyBaii CEPEIHIO JICHUCTICTh JUIsl BCI€T MOCHIKYBAHOI TEpUTOpPIi Ta
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HaBeJIM TIEPESIiK OCHOBHUX TOPYIIECHb, IO OyJW TOB’s3aHI K 3 AHTPONOTCHHHMH, TaK 1 3
NPUPOJHUMHU YAHHUKAMH.

TakuM yuHOM, OyJIO NPHUIHATO pIllIEHHS BUKOPUCTAaHHS pecypciB [8-9] must orpumanHs
300pakens [Ipugonenpkoro micHuirea 3a 40 pokis (1984 — 2024) — puc. 1.
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Pucynok 1 — Jlani mozo cenumia CriBakiBka

V pobori [5] 3a nonomororw cepicy [6] Bu3HAa4YaBCs BiICOTOK BHPYOKH, SIKM Ha cepBici
BiZJ0OpaxaBcs pOKEBUM KOJIbOPOM. 3apa3 MOTPIOHO BU3HAUATH BiJICOTOK 3€JIEHOTO KOJIbOPY:

Pgreen
V = ———100% M
PZ

e V — BiICOTOK HAaCHYEHOCTI;
Pgreen — KUTBKICTB ITKCEITIB 3€JICHOTO KOJIBOPY;

P;— 3aranpHa KUIBKICTb MIKCEJIiB Ha 300paXKeHH.

OCKiBbKY Hac IIKaBUTh HE TUTHKH 3arajibHa CUTYAIIisl y JIICHUIITBI, ajie i CUTYyaIlisl Ha OKPEMHUX
TUTSTHKAX, KOXKHE 13 3aBaHTaXKEHUX 300pakeHb MOKHA PO3JUTHTH Ha KBAaJpaTH, a MOTIM aHali3yBaTH
JaHl 10 KOKHOMY KBajapaTy. lJis KOKHOTO KBajapaTy OyJIo po3paxOBaHO HACHYEHICTH 3€JICHHUM
KOJIbOPOM Ta 30eperkeHo y Tabnuii (puc. 2).

[TocTae muTaHHS TPOTHO3yBaHHS 3MIHH JTICOBUX Haca/PKeHb Ha 00paHii AUISHIT, TOOTO 3MiHU
BijicoTKa JiicuctocTi. Ile MoxkHa 3pobutn pizHUMEU Tuisixamu. [lo-miepiie, 3acTocyBaTu 3BUYAHI
pIBHSIHHSA perpecii (JiHiiHe, MoJiHOMIaTbHE, EKCIIOHEHITIaTbHE TOIIO0) OKPEMO JI0 3HAYE€Hb KOKHOTO
KBaJpaTy, a TAKOX JIJIs1 yChOTO JIICHUIITBA. [HIIMIA mu1siX — GopMyBaHHS MEPENTIKY BX1THUX (aKTOPIB.
Sk BXigHI QaKkTOpH MOKHA PO3TIIAIATH, MO-TIEpIe, MOKAa3HUKU Ha OOpaHid MUISHIN y TOMepeaHl
poku (Hexail 1e 3HadeHHsI Oyje MOpPIBHIOBAaTH JIBOM), a MO-ApPYTe, Il K MOKA3HUKUA Ha CYCIJIHIX
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ninsakax. Ockiapku Mu Mmaemo 3Hadenns 1o 9 (0..8) kBagpartax 3a TpH POKH, TO KiIJIBKICTh (HaKTOPIB
Oyne nopiBHIOBaTH 27: 26 BXigHUX Ta | BUXiAHUI (3HAYCHHS HA JOCITIIKYBaHOMY KBaJIpaTi):

Y = F(XOml’ Xom2: %11 X11m1 X33m2 @)

ITicis 06po6ku ganux 3 puc. 1 3a hopmyior (2) oTpuMaeMo pe3yibTaT, [0 HaBeICHO Ha
puc. 2.

Keagpar  Cycia Cyoin Cyoia Cyeia Cyein Cyein Cyoin Cyein Cyein Cyein Cyon Cyein Cyoin Cyein Cyein
o peLy-y  LYAS KLY v ok BV panyg X-1Y]-Tix per b Py BLYA- v [yed) -tpi
e 2p00 Zp0mn 2p0n
4 5 7 15 17 18 20 21 22
X1Im2 X12m1 X23 X23m2 | X3L X3Im2 | X32 | Xa2ml
9141 | 100,61 | 87,36 88,49 10,9 26091 | 29,38 | 60,74 |
56 98,87 9387 9109 | 84,31 363 | 7657 | 29,38
89,24 100,29 96,04 87,36 | 70,04 109 | 9215 | 7657
96,61 100,72 52,63 93,87 | 78,58 8431 | 79,99 | 9215
95,84 92,51 96,04 | 67,62 7004 | 694 | 79,99
93,87 54,6 92,63 | 63,93 7858 | 8442 | 694
54,87 9251 | 6585 67,62 | 82,79 | 8442
52,2 S46 | 63,84 6303 | 59,68 | 82,79
87,81 9487 | 31,91 6585 | 44,37 | 59,68
54,48 922 | 59,63 6384 | 7684 | 44,37
92,27 87,81 | 49,19 3191 | 67,03 | 76,84
5,66 9448 | 8123 5963 | 78,95 | 67,03
93,49 92,27 | 40,09 7919 | 4337 | 7895
50,28 95,66 | 32.23 81,23 | 53,39 | 4337
95,55 93,49 | 77,84 20,09 | 7117 | 5339
93,26 30,28 | 84,94 32,23 | 8602 | 7L17
52,33 9555 | 54,23 7784 | 57,39 | 86,02
57,47 93,26 | 94,17 84,04 | 9568 | 57,39
96,56 92,33 | 79,83 5423 | 87,18 | 9568
96,56 57,47 | 7983 9417 | 87,18 | 87.18
96,11 96,56 | 63,12 7983 | 8654 | 87,18
93,55 96,56 | 86,66 7983 | 8562 | 86,54
91,29 96,11 | 3539 6312 | 5527 | 8562
91,29 9355 | 3539 86,66 | 5527 | 5527
91,29 91,29 | 3539 3539 | 5527 | 5527
52,97 9129 | 79,29 3539 | 82,27 | 5527
94,05 91,29 | 60,29 3539 | 7347 | 82,27
50,21 92,97 | 63.32 79,29 8 7347
88,83 94,05 | 38,44 60,29 | 47,65 68
52,92 50,21 | 79,96 6332 | 8517 | 47.65
91,34 88,83 | 36,88 38,44 | 61,19 | 8517
94,41 92,02 | 8589 7996 | 84,96 | 61,19
ST.11 9134 | 66,15 | 8589 | 3688 | 78,11 | 84,96
92,74 94,41 | 46,16 | 6615 | 8589 | 56,35 | 78,11
735 | 76,66 90,82 OL11 | 4453 | 4616 | 6615 | 7359 | 56,35 |
73,74 | 77.61 50,75 92,74 | 5529 | 4453 | 4616 | 619 | 73,59
68,77 | 7182 88,63 9082 | 80,69 | 5529 | 4453 | 78,49 619
| 7365 | 8037 538 90,75 | 91,04 | 80,69 | 5529 | 7607 | 78.49
8259 | 7515 63,32 83,9 | 88,63 | 6526 | 91,04 | 8069 | 7062 | 76,07

Pucynok 2 — OGpo06ieHi JaHi HACHYEHOCTI 3eJIEHUM KOJIbOPOM

Taky 3amady NpOrHO3yBaHHS MOKHA pO3B’S3aTH PI3HUMU MaTeMaTUYHMMU METOJlaMH,
HalpUKIaJ, METO10M O6araropakTOpHOI JTiHiHHOI perpecii 800 METOIOM IITYYHUX HEHPOHHUX MEPEXK
[10].

Jlnist IpoBeIeHHs pO3PaxyHKiB 32 000Ma MeToAaMHU OyJI0 BUKOPUCTAaHO MOBY IPOrpaMyBaHHs
Ta a”ani3y naHux R [11]. CTBopeHO CKpHUINT, IKUIf BUKOHYE pO3paxyHKH MOOYI0BOIO JIiHIN perpecii
Ta IITYYHOT HEHPOHHOI Mepexi, a TAKOXK J03BOJIsIE BUBHAUUTH HaWKpally apXiTeKTypy HeHpOHHOI
Mepexi Ta OuIbI epeKTUBHUN METO/ ii HaBUaHHS [yl HEBHOIO HA0OpY AaHUX.

[Ticns unceHHUX 3aMmyCKiB CKPUNTY JUIS PI3HUX MTapaMeTpiB KUIBKOCTI IPUXOBAHUX IIAPIB Ta
KUJIBKOCTI HEHPOHIB Y HUX 3’sICOBAHO, L0 HaKpaluil pe3ynbTaT 3a0e3neuye nepcenTpoH 3 OJHUM
IPUXOBAaHUM IIAPOM Ta JIBOMA HelipoHaMu y HbOMY (puc. 3).

Pesynbratu po3paxyHKiB, 0 3BeIeH1 10 Ta0. 1, CBiT4aTh MPO BUCOKY KOPEIIAIIIIO TaHUX JIJIS
BU3HAYEHHS BIJCOTKA JIiCy, sIKMM Oyne BUpyOyBaTHCS Ha BU3HAUCHOMY KBaJpaTi. 3aCTOCYBAaHHS
[[LOTO MEPCENTPOHY AJIsI MPOTHO3YBAaHHS HA OCTaHHIH piK MOKa3ano moxuoky B 9% (tabm. 2).
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X0m1

X0m2

X11

X11m1

X11m2

X12

X12m1

X12m2

» \-'&.1

X13

X13m1

X13m2

X21

X21m1

X21m2

X23

X23m1

X23m2

X31

X31m1

X31m2

X32

X32m1

X32m2

X33

X33m1

X33m2

Tabmuis 1 — Pesynbratu mj

POTHO3YBAaHHS TECTOBO1 MHOKUHU

N Y Res error

) 85.57 84.20 0.032065

6 89.87 90.78 0.021238

17 62.98 62.90 0.001956

19 95.64 91.57 0.095026

20 95.64 94.12 0.035584

25 68.72 68.18 0.012687

26 76.55 71.90 0.108633

27 87.16 84.33 0.065978

33 73.50 71.78 0.040224

36 73.65 71.96 0.039438

38 86.21 88.29 0.048462

Tabmuus 2 — Pesynpratu mporHo3yBaHHs Ha oOpanomy kBaapati MLP 26x2x1

Year Y Res error
2024 76.12 78.19 0.09667

= BN
Sk
N s Y

2,

Pucynok 3 — ApxiTekTypa HeHpOHHOI Mepexi
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BUCHOBKH
HaBeneno mareMaTHuHy MOJEIb Ta PO3PaXyHKH MPOTHO3YBAHHS 3MiHU PIiBHS JIICUCTOCTI 32

JIOTIOMOTOI0 CYITyTHUKOBOTO cepBicy Landsat i MOBM mporpamyBaHHs Ta aHamizy AaHux R.
CdopmoBano mepernik BXigHUX (aKTOpiB, MO MICTATh IMOKa3HUKA Ha OOpaHii AUISHIN y JBa
MOTIEPEIHI POKU Ta IIi K MOKA3HUKH Ha CYCIIHIX AUISHKAX. 3aady MpPOTHO3YBaHHS PO3B’s3aHO
METOJIOM IITYYHUX HEHpOHHUX Mepexk. CTBOPEHO CKPUNIT MOBOIO IIPOrpaMyBaHHS Ta aHAJI3Y JTaHUX
R, sikuif BUKOHY€E pO3paxyHKH UM METOJIOM, a TAKOXK J03BOJISI€ BU3HAUNTH HAWKpAILly apXiTEKTypy
HEHPOHHOI Mepeki Ta OLIbII €()eKTUBHUN METOJ ii HAaBYaHHS /U1 IEBHOTO Habopy nanux. HaBenpeHo
pPO3paxyHOK IMHAMIKM BUPYOKH Ha oOpaHOMYy KBajparTi (IPOTHO3 Ha OCTaHHIM pik 3abe3meuye
noxubky B 9%). 3’scoBaHo, 110 Hailkpamui pe3ynbTar 3a0e3lneuye MepCcenTpoH 3 OIHHUM
NPUXOBAaHUM IIAPOM 3 IBOMA HEUPOHAMH.

10.
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MouruanoBa M.O.(Xuenvnuyvkuii Hayionanbruil ynigepcumem, m. XmenvHuyvbkuii, Yxpaina)

BUSIBJIEHHA OB’€KTIB IIPONAT'AH/IN Y TEKCTOBUX INOBIIOMJIEHHAX
3ACOBAMM OBPOBKH ITPUPOJHOI MOBMU 13 BI3YAJIBHOIO IHTEPIIPETAIIE€TIO
PE3YJIBTATIB

Anomayia: 3anpononosano memooO 6uAGleHHA 00 €KmMi6 NPONA2AHOU 8 MeKCMO8UX NOBIOOMAEHHAX
HelipomepedicesumMu 3acobamu 06poOKU NPUPOOHOT MOBU i3 BI3YAIbHOI IHMepnpemayielo pesyromamis. Biominnicmio
Memooy € pO3UWUPeHH MHOMCUHU 00 €KMI8 nponazanou 3a paxyHox 000a8anHs 6apianmis ix Cl108ecHUX nooanb ma
BUKOPUCIMAHHS KOHIMEKCIHUX GIKOH OJiA BUAGNEHH 36 A3Ki6 Midc npullomamu ma 06 ’ekmamu nponazanou. Lle dossonsae
ROKpawumuy pe3ynomamu GUAGIeHHs i 3abe3neuumu Gi3yanvie Npeocmasients 00 €Kmie nponazanou, ix clo8ecHux
NOOAHb I BANCIUBUX 38 A3KIE MidC HUMU. EKChnepumeHmanoHo 008e0eHO epexmugHicms nioxoody, AKull 3abesneuye
pesyiomamu, wo KOpenioms 3 eKCRepmMHUMU OYIHKAMU, | 003605€ GI3YalbHO cnocmepicamu 00 €Kmu naugy ma ix
36’A13KU 8 PAMKAX NPONALAHOUCHICLKUX NPULIOMISE.

Knrwuosi cnoea:. 06 ’ekmu nponazanou, nputiomu nponazanou, UaeleHHs NPponazarou, oopooKa npupooHoi
Mo8U

Abstract: Proposes method for detecting propaganda objects in text messages using neural network tools for
natural language processing with visual interpretation of the results. The difference of the method is the expansion of the
set of propaganda objects by adding variants of their verbal representations and using context windows to detect
connections between techniques and propaganda objects. This allows to improve the detection results and provide a
visual representation of propaganda objects, their verbal representations and important connections between them. The
effectiveness of the approach, which provides results that correlate with expert assessments and allows visually observing
objects of influence and their connections within the framework of propaganda techniques, has been experimentally
proven.

Keywords: propaganda objects, propaganda techniques, propaganda detection, natural language processing

INocTanoBKka npodeMu

[Iponaranna, cipsMoBaHa Ha MAaHIYJISALIIO PI3SHUMHU 00'€KTaMHU 711 AOCSATHEHHS NOJITHYHHX,
COLIIAJIbHHUX,, EKOHOMIUHKX a00 KYJIbTYPHHX I[IJICH, € OTHIM 13 HAHOUIBIINX BUKJIMKIB cydacHOCTI [1].
O06’exTamMu TIpONaraHu € oco0u, TpyIu, opraH13au11 coIliaibHI BEPCTBH, a TAKOX SABHIIA abo
1HCTI/ITy1_Ill Ha SIKi CIIPAMOBaHI MPOMAraHIMCTChKi 3YCHILIS 3 METOIO BIUIMBY Ha IXHIO CBiIOMICTS,
eMollii, MOBEIIHKY Ta CYCNUIbHY AYMKY. Y Cy4aCHHX yMOBaxX BaXXJIMBUM 3aB/IaHHSIM € HE JIUIIEe
aBTOMATH30BaHE BHABJICHHS MPONAraHIUCTChKUX anﬁOMiB asie I BU3HAUEHHs 00'€KTIB, Ha SKI
CIPSIMOBaHI 11 HpI/II/IOMI/I 3 BI3ya/IbHOIO IHTEPIIPETALIEIO PE3YIbTATIB.

VY naHiii cTaTTi NpPEACTAaBICHO METOJA BHUSBJIECHHS O00'€KTIB MpOMaraHiyd B TEKCTOBHUX
MOBIJIOMJICHHSIX 3aco0aMu 0OpOOKH MPUPOIHOI MOBH. BiIMIHHICTIO IbOTO METOJY € PO3IIMPEHHS
MHOKMHU OO'€KTIB IMpOMNaraHjyd 3aBJIsSKH [OJIaBaHHIO BapiaHTIB IX CJIOBECHUX MOJaHb Ta
BUKOPUCTAHHIO KOHTEKCTHUX BIKOH JJi1 BHSBJICHHS 3B'A3KIB MDK HpuiiomMmamMu Ta 0O0'eKTaMu
nponaranau. Lle m03Bossie HE TUIBKM MOKpAIUMTH pe3yJbTaTH BHSBIEHHS, ane i 3a0e3nedyuTd
Bi3yaJIbHE MpEACTaBIEHHS 00'€KTIB MpOMaraHiy, iX CJIOBECHHX IOJaHb Ta BAXJIMBUX 3B'SI3KIB MIXK
HUMU. EKcriepuMeHTanbHO JOBEICHO €PEKTUBHICTh MIAXOMY, SKUN 3a0e3rnedye pe3ysiabTaTH, IO
KOPEJIOI0Th 3 €KCIIEPTHUMHU OIL[IHKaMH, 1 J03BOJISIE BI3yaJIbHO CHOCTEpiraTu o0'€KTH BIUIMBY Ta iX
3B'SI3KM B paMKax MpONaraHAuCTChbKUX MPUHOMIB.

3anpornoHoBaHui minxing kopemoe 13 Llimamu cramoro possutrky I[TPOOH Ta crpuse
aBTOMATH3alil MpOLeCy BHSABICHHA Ta KiIacHQiKamii Mpomaraniu, 3abesmedyiodn IIOBHI,
IHTEPIPETOBAHI Ta 3PO3YMiNll pe3ymbTaTH. 30KpeMa, 3aCTOCYBaHHs METOIIB OOPOOKH MPUPOIHOI
MOBH JUISl BUSIBICHHS Ta KIAacH(iKallii TeXHIK i 00'eKTiB mpomarasiu crpusie pocsrueHHio Llim
ctasioro po3Butky OOH Nel6 nuisixom mMigBUIIEHHS MPO30POCTi 1H(POpMALIMHOrO MpPOCTOpy Ta
3MIIHCHHS IHCTHTYLiNHOI noBipu. Takox me miarpumye Llime cramoro possutky OOH Ned,
PO3BHBAIOYH MEiarpaMOTHICTh 1 KPUTHYHE MUCIICHHS! Cepe/] HACCNICHHSI, 1[0 J0MoMarae C(I)CKTI/IBHO
OPOTHIIATH Jie3iH(popMartii.

AHaJi3 ocTaHHiX myoaikamii

€ N1Ba OCHOBHMX MiJIXOJH 10 11eHTU(IKallll Tponaraijay: 4yepe3 po3i3HaBaHHS IMEHOBaHHUX
cytHocrer (NER) Ta xnacudikarito mosimomiens [2]. Po3rmsnatoun mpomaranay sk 3agaqy NER,
BUHHUKAE CKIQJHICTh 4epe3 Te, IO TeKCTOBI ()parMeHTH 3 MPOINAraHAMCTCHKUMH elleMEHTaMu

110



3a3BUYail JoBIIi, HXK TUNOBI 00’ ekt NER (Hanmpukiiasn, iMeHa 4 Ha3BH), 1 MOKYTh CKIQJaTHCS 3
KUTBKOX JIECATKIB CNiB. Y TOCHiIKEHHI [3] aHami3yeThCsl BIUIMB JOBKUHU TEKCTOBHX CETMEHTIB Ha
TOYHICTh BUSBIICHHS IIPOIMAraHjy, IO IATBEPKYE 3POCTaHHS CKJIATHOCTI 13 301IBIICHHSIM
JOBXKUHN niana3oHiB. bymo BunpoOyBaHO KilbKa TOMY/ISIPHEX METOJIB /IS ITi€T 3a7a4i, BUMIPSHO,
HACKUIbKH J10Ope BOHHM BiOOpaXKarOTh PO3MOJUT JOBXHHHM TEKCTOBUX (ParMeHTiB, a TaKOX
3alPONOHOBAHO MiJX1J i3 aJalTHBHAM PIBHEM 3TOPTKH, KM MOKpallye 0OMiH iH(pOpMALIE0 MK
BiJIaJIecHUMU cjioBaMH. Lle pimeHHs cripusie OUIbII TOYHOMY BiJIHOBJICHHIO JOBXXKHHU TEKCTY 0€3
BTPATH 3arajbHOi e(h)EeKTHBHOCTI.

Y pamkax KOCIIKCHb, OPi€HTOBAaHUX Ha BHSBICHHS MpONaraH/u Ha piBHI JIOKYMEHTIB,
AKIIEHT 3pOO0JICHO Ha OIlIHIII TEKCTYy SK IUTICHOTO eleMEeHTa i Horo okpeMux pedeHb [4]. s
M00Y10BH O3HAK BUKOPHCTOBYKOTBCS Pi3HI METOIM: CTATHCTHYHI 1HINKATOPH, BCKTOpI/IBaHIH TEKCTY
[5], nminrBicTH4He MapKyBaHHS, a TAKOK PO3ITI3HABAHHS TPUIEPIB, TAKUX K aOCOIIOTHI 3aiMEHHUKH
a00 TiACHITIOBAIIBHI CIIOBA.

ExcriepuMeHTanbHi pe3ynbTaTd MpoAeMOHCTPYBAIIH, 1110 MOJIEIh, 3aCTOCOBAHA J0 aHaJli3y Ha
piBHI JOKyMeHTa, pgocsaria TouHocTi 0,943. Bona 3morna mpaBwibHO KiacudikyBatu 6097
HEIpOMara’IuCcTChKkuX crarei 1 694 mpomaranmuctcbki ctarTi. [liaxin, opieHTOBaHMI Ha aHai3
OKpEMUX peUYeHb, II0Ka3aB HMKY1 pe3yabTaTh: TOYHICTB ckiana 0,744. Bin ycnimHo izenTudikyBas
205 mnpomaraHgUCTCHKUX pedeHb 1 1917 HemponaranaumcTchkux, mpore 731 crarTio Oyno
KJ1acu(ikoBaHO HEBIPHO.

AHani3 noB’s3aHuX podIT y cdepl BUIBICHHS NPUMOMIB Ta 00'€KTIB MpOMaraHaAd BUSBUB
HU3KY npobsem. Ilo-mepie, ICHy€e BIJICYTHICTh KOMIUIEKCHOTO aHai3y B3a€MO3B’SI3KIB MiX
TeXHIKaMM Ta 00'eKkramu mponaraHid B tekcrax. Ilo-npyre, Gpakye ysaralbHEHb [isi 00'€KTiB
mponaraHay Ta ix aIbTCPHATHBHIX 3ra/lyBaHb. IIponarana, sika BUSBISETHCS TUIBKA YePe3 MOIIYK
IMCHOBaHNUX CYTHOCTCH, HE AEMOHCTPY€E CIPIMOBAHOCTI TeXHIK. Takox, TeXHIKM IponaraHj, mo
BISIBISIFOTECS. HA PIBHI IOKYMEHTY, He Bm06pa>1<a}0n, 00'€KTiB BILIUBY. Hpn BUSIBIICHHI IPOITaraH/In,
SIK 3aBJIaHHS IOIIYKY IMEHOBAHHX CYTHOCTEH, 00'€KTH YacTO TMOJAIOTHCS BIIACHUMHU HA3BaMH, IO
OXOILTIOE TUTAHHS «HA KOTro?», OJHAK HE OXOIUNoe muTaHHs «Ha mo?» MaroTh CHpsiMyBaHHSI
BUKOPHUCTaHI IPUHOMHU

MeTa pod0TH Ta IOCTAHOBKA 3aB/1aHb

Mera pO60TI/I MoJisirae B CTBopeHHi METOJy BUSBIICHHS 00’€eKTiB Tponaran/i1 3aco0amu
00pOOKM TPHUPOJHOI MOBH 3 Bi3yalbHOIO IHTCPNPETAIIEI0 PE3Y/IBTATIB, SKHi TO3BOTHTB Yy
MPONAraHAUCTChKUX TOBIJOMICHHAX 3HAXOIUTH Ha KOro, 1 Ha IO, CIPSIMOBaHI KOHKDETHI
BUKOPHUCTaHI B TIOBIJIOMJICHHI TIPUHAOMH TPOIAraH{, a TAKOXK OAYUTH Bi3yaJbHY IHTEPIIPETAIIIIO
pe3ynbTary.

Buxkiax 0CHOBHOT0 MaTtepiaiy

B pamkax migxoay 10 BUSBIEHHS OO’€KTIB IpOMaraHAd y TEKCTOBHX MOBIIOMIIEHHSX
3acobamu 00pOOKH IPUPOTHOT MOBH 13 Bi3yaJIbHOIO IHTEPIPETALIEI0 PE3YJIbTaTIB Oyl BUKOPUCTAHO
MHOXHHY HeHpoMepekeBUX Mozened ansd iAeHTudiKaii MponaraHAUCTChbKUX MPUHOMIB IS
MOJAJIBIIIOTO CIIBBITHECEHHS 1X 3 3HaWaeHuMHU 00’ ektamu. Kokna 3 17 moneneit Oyia monepenaHbo
HaBY€Ha /I BUSIBJIEHHS KOXKHOTO 3 MpuiiomiB mponaranau: «Appeal to fear-prejudice», «Causal
Oversimplification», «Doubt», «Exaggeration», «Flag-Wavingy, «Labeling», «Loaded Language»,
«Minimisation», «Name Calling», «Repetition», «Appeal to Authority», «Black and White Fallacy»,
«Reductio ad hitlerum», «Red Herring», «Slogans», «Thought terminating Clichesy,
«Whataboutism» [6] BiamoBiaHO.

Metona BUSABICHHS 00 €KTIB MpOMAaraHgy y TEKCTOBUX MOBIJIOMIIEHHSX 13 3aCTOCYBaHHSIM
3ac00iB 0OpOoOKM NpPUPOAHOI MOBM Ta Bi3yaJbHOI IHTEpHpeTamii pe3yibTariB 0a3zyeTbcs Ha
HEHpOMEpEeKEBUX MOJENAX TIUOOKOr0 HaBUAaHHS Ta CKIAAAEThCs 3 KUIbKOX eramiB. Crepury
3MIUCHIOETHCS 1IeHTU(DIKAIlISA 00’ €KTIB MPOIAaraH Iy MUITXOM PO3ITi3HaBaHHS IMEHOBAHUX CYTHOCTEH
(NER). Ha ipomy etarmi mpoBOAUTHCS MoTiepeTHs 00poOKa TEKCTY, IO BKIIFOYAa€ BHIAJICHHS IOBTOPIB
cepell IMEHOBAaHMX CYTHOCTEH Ha PiBHI X JIEM.

HactynHuM KpoKOM € po3HIMPEHHS MHOXHHM 00’ €KTIB MPONAralay 3a paxyHOK BU3HAYCHHS
aIbTepHATUBHUX BapiaHTIB CIIOBECHOTO MO/IaHHS IMEHOBaHUX cyTHOCTeH. [Ticist nporo popmyrorses
KOHTEKCTHI BiKHAa Al KOKHOTO O00’€KTa MpomaraHiy, 3 ypaxyBaHHSIM 33JaHOTO MOPOrOBOTO
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3HAYCHHs MIHIMQJIBHOTO pO3MIpy BikHa. B MekaxX IMX KOHTEKCTHHX BIKOH OIIHIOETHCS
IHTEeHCUBHICTh BUKOPUCTaHHS IPUAOMIB MPOMAraHy 3a JOMOMOT 00 HEHPOMEPEKEBUX MOJIETICH.

Ha ¢inanpHOMYy ertami OynyeTbcsi MHOXHMHA BaXKJIUMBUX 3B’A3KIB MK 00’€KTamu Ta
npuiiOMaMu TpPOMAaraHad, BPaxOBYIOUM I[OPOTOBI 3HAYEHHS MIHIMAJIBHOTO PIBHS TPOSBY
IPOTAraHANCTChKUX MpuiioMiB. OTpUMaHi pe3yabTaTH JO3BOJISIOTH HE JIUIIE BUSBUTH 00’ €KTH Ta
CHPSMOBAHICTh TNPOIATaHM, ajleé W 3a0e3MeYnTH Bi3yali3alilo 3B’S3KIB MK NpUAOMaMu Ta iX
JIBOBUMU 00’ €EKTaMHU.

CxemaTu4He NPECTABICHHS 3allPOIIOHOBAHOTO METO/1y HaBEJICHO Ha pUCYHKY 1. BxigHumu
JaHUMH JUIsl peaiizaiii METOAy € TEKCT s aHalidy, MHOKHMHA 11eHTHU(IKOBAHUX TNPUHOMIB
Iponarai/id y TeKCTi Ta Habip MonepeHhO HABYCHUX HEHPOMEPEKEBUX MOJICNIEH, aallTOBAHUX IS
aHaJi3y KOXKHOrO MpuiloMy. Pe3ynpraToM mepmioro eramy € MHOXKHMHA 00 €KTIB IpONaraHj,
BHU3HauUeHUX 3a qonomoror NER, 6e3 moBTopiB.

Bxigui nami:
— TECTOBMIT TEKCT A7 BUABICHHA 00'¢KTIB IIPOMaraHIy,
— MHOMKHHA BHKOPUCTAHUX IIPHIOMIB ¥ TECTOBOMY TEKCTI;

— MHOXHHa HeHpoMeperkeBHX Mojernel, HaTpeHOBaHHX JJIA aHaNI3y KOXHOTO IIPHHOMY IIpOTIaraH .
Etan 1. QopMyBanHa MHOKHUHN 00’€KT1B MPOTIATaH A TIIIIX0oM TToimyky NER
(po3mi3HaBaHHI IMEHOBAHMX CYTHOCTEH)

Eran 2. TTonepennsa oGpodka TEKCTY Ta PO3NTHPEHHA MHOKHHM 00 €KTIB MPOIATAHIH 338 PAaXyHOK
Jl0/laBaHH4 BaplaHTIB X CTIOBECHUX NOAaHbL
Eran 3. TToGy0Ba KOHTEKCTHHX BIKOH JUIA CIIOBECHHX MOJIaHb KONHOTO 00 eKTY HpoTaraHin
3 YpaxyBaHHAM MOPOTOBOTO 3HAUEHHT MIHIMATLHOTO POZMIPY BikHA
Eran 4. OuiHoBaHHs piBHA BUKOPUCTAHUX LPHIOMIB IPOIIAraH/ il B MekaxX KOHTEKCTHHX BIKOH
3a HeflpOMepe:EeBUMH MOJEILAME
Eran 5. [ToGynoBa MHOKHHEH BaKIMBUX 3B 43KIB MUK HpHifoMaMy Ta 06 eKTaMH IIpOTaras i
3 ypaxyBaHHAM IIOPOIOBOIG 3HAUSHHS MIHIMAILHOTO PIBHA IPOBY IpolaraHIiu
Buxiani njamni:

BisyanbHe mojaHHS ceMaHTMYIHOI MO IIPoIlaralfn I TeKCTY, SKa MICTUTh HacTyIIHe:

— MHOXHKHa 00’ €KTIB [IPONAraH/,

— MHOXWHA CTIOBECHHX ITOJIAHEL 00 €KTIB MPOTarasIu 3 OIIHKOI iX CEMaHTHIHOI BaXKITHBOCTI,

— MHOXKMHA BANUIMBHUX 3B 3KIB MUK IpuiioMamy Ta 00'€KTaMK IPOIAralan 3 OLIHKOIO iX
\CGMaHTI/I‘-IHOi BaKITHBOCTI. /

Pucynok 1. Cxema metony BusiBI€HHS 00’ €KTIB Mponarasau 3acobamu 00poOKH MPUPOAHOT MOBH 3
BI3yaJIbHOIO IHTEPIIPETALIIE€I0 Pe3yIbTaTiB

Ha npyromy erami MeTOOWKH A0 KOXHOI 1I€HTH(IKOBAHOI I1MEHOBAHOI CYTHOCTI
3MIIMCHIOETHCS TOIIYK CXOXKHMX 32 3HAYCHHSIM CliB-00’€kTiB. Lle 0O0yMOBIIEHO THM, IO MOHSTTS
00’exTiB npomnaranay € mupiuM 3a NER 1 BkiItodae He nuiiie iMeHOBaH1 CYTHOCTI, alie i KyJlbTypHI
aCIIeKTH, COILIaJIbHI TPYIU UM y3arajibHeH1 KaTeropii, 00’ e1HaHi 3a CIIJIbHUMHU XapaKTEePUCTHUKAMHU.
Jlnst 1bOr0 BHKOPHUCTOBYETHCS TIOTIepeIHbO HaBueHa Mozenb FastText, po3pobiena Facebook Al
Research, skxa 0Oa3yerbcst Ha apxiTtektypax «CBOW» 1 «Skip-gramy». I[lg moxmens mo3Bosisie
aHaJIi3yBaTH KOHTEKCT CJIiB, BCTAHOBJIIOBATH CEMAHTUYHI 3B 3K Ta BUSABIATH CXO0X1 00’ €KTH, 10
JIa€ 3MOTY PO3IIUPUTH CIIEKTP BUSBICHUX 00’ €KTIB MPOTIAaraHIy.

VY pamkax pobOotu FastText noHaB4aeThCsi Ha TeKCTaxX, SIKI MICTATh MpoHaraHmy, Ajs
3a0e3neyeHHs cnenugigyHoCTi 10 3agadi. B pesynpraTi 1boro eramy (OpMyeTbcs pO3LIMPEHA
MHOXHHA 00’€KTIB IpOMAaraHay, sKa BKJIOYA€E aJbTEPHATHUBHI BapiaHTH iX CIIOBECHUX IOJAHb.
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MiHiIMaJIbHAI piBEHb CEMAaHTUYHOI OJIM3BKOCTI BU3HAYAETHCS EMITIPUYHO 3aJICKHO BiJ Crienu(iKu
3aBJIaHHS; Y JAaHOMY BHIIAJKy OPOTOBE 3HAUEHHS HE BUKOPUCTOBYBAJIOCH.

Ha tperpomy etami (opMyrOTbCS KOHTEKCTHI BIKHA JJIsI KOXKHOTO 00’€KTa MpoIaraHj.
KOHTEKCTHUM BIKHOM BB@KAETHCS PEUCHHS, Y SIKOMY 3TaAyeThCs KOHKPETHHH 00’€KT. SIKIIo onHe
pEeUeHHs MICTUTh KUIbKa 00’ €KTiB Mpomnaralau, KOHTEKCTHE BIKHO CTBOPIOETHCS OJIMH Pa3 1 BKIIOYAE
BCi 00’ekTH. Y pasi, AKMO 00’€KT MpOIaraHad Mae KiIbKa CIOBECHUX TOJaHb, KOHTEKCTHI BIKHA
JyOITIOFOTHCS JIST KOYKHOTO 3 HUX, 30epirarouu 3B's130K 13 BUXITHUM 00’ €KTOM. MiHIMQJIbHHI pO3Mip
KOHTEKCTHOTO BiKHA BHM3HAYA€THCS MOPOrOBUM 3HAYEHHSM, SKE BCTAHOBIIOETHCS BiJIMOBIIHO 10
BHUMOT aHai3y.

Ha derBepTOMy erari METOMy 3MIMCHIOETHCS aHAN3 KOHTEKCTHHUX BIKOH JIJISi BU3HAYCHHS
pIBHS BHUKOPUCTAHHS MpOMAaraHAMCTChKUX MpuiioMiB. lle peanizyeTbcsi depe3 BEKTOPHU3ALiO
TEKCTOBOTO KOHTEHTY KOHTEKCTHHMX BIKOH i3 3aCTOCYBAaHHSM BIITOBIJHHX BEKTOPU3ATOPIB, MiCIIs
4Oro HEWUpPOMEPEeKEBl MOJETl aHATI3YIOTh MPHHAIECKHICTh KOXHOTO KOHTEKCTHOTO BIKHA [0
KOHKPETHHX NpUiioMiB ponaranau. OmiHKa 3MIHCHIOETBCS TS BCIX BUSBICHUX Y TEKCTI IPUIOMIB,
10 J03BOJISI€ BU3HAYMTH, SIK1 caMe 3 HUX OyJIH 3a/1sH1 Y MeXaxX KO)KHOT'O KOHTEKCTY.

Ha ¢inanpHOMYy, m’siToMy eTami, OyIyeTbcs MHOXHHA BaXKJIMBUX 3B’SI3KIB  MIXK
MPOMNAraHIMCTChKUMU TMpUiloMaMu Ta 00’ekTamu. Lle BUKOHY€ThCS 3 ypaxyBaHHSM IMOPOTOBOTO
3HAYCHHS MiHIMAJIBHOTO PiBHS MPOSBY MpOMAaranau. Y BHUIIAJKaX, KOJIH CHJIa MPOSBY NPUHOMY B
MeXaX KOHTEKCTHOT'O BIKHA HE MEpPEeBHUIIYE BCTAHOBIEHHI IMOPIr, TaKWil MPUIOM HE BBAXKAETHCS
3aCTOCOBAHMM JI0 BIATIOBIAHOT IrpymH 00’ €KTIB.

Takuit miaxig 3abe3nedye HAOUHE MOJAHHS PE3YNbTATIB, COPUAIOUM €(EKTUBHOMY aHaTI3y
MIOB1JIOMJICHb 1 PO3YMIHHIO B3a€MO3B’SI3KiB MK 00’ €KTaMHU Ta MPUHOMaMHU TIPOTIaraH/Iu.

Jiis ouiHku epeKTUBHOCTI pO3pOOJIEHOr0 METOAY BHUSBICHHS 00’ €KTiB IMporaraHaud Oyio

CTBOPEHO CIICIlialli30BaHe TporpaMHe 3a0e3TleueHHs, sIKe J03BOJISIE iIeHTH(]IKYyBaTH 00’ €KTH
MpOMaraH/iy, 31ICTaBJISITH iX 13 BUKOPUCTAHUMU IpUOMaMH Ta BigoOpakaTu pe3yibTatu y popmi
Bi3yasbHOI aHaNmiTUKU. OTpuUMaHi JaHi MOPIBHIOBAIKCS 3 BHCHOBKAMH aBTOPUTETHUX PECYpPCIB i
eKCIepTiB y cdepi NpoTH il Mponaras/i, o a0 3MOTY OI[IHUTH SKICTh 3aIIPOIIOHOBAHOTO MiAXO01Y.
Jiis TecTyBaHHS BUKOPHCTOBYBAIHMCS PO3MIYEHI TOBITOMIJICHHS 13 COLIQJIBHUX MEPEX,
nigroroeneHi L[eHTpoM cTpareriyHUX KOMYyHIKaIii [7], siki MiCTHIM eKcriepTHI BHCHOBKH. Lle
3a0€3MeYnIo MOXJIMBICTh MOPIBHSIHHS PE3yJIbTaTiB POOOTH METOAY 3 HE3aJeKHHUMHU OLIIHKaAMHU
¢axiBuiB. Ilporpamue 3abe3meueHHs s peanmizauii MeToqy Oylo po3poOJIeHO Yy BUIIIL
Be03aCTOCYHKY Ha MOBI porpamyBaHHs Python. B Mexax cTBOpeHOro mporpaMHOro 3a0e3rnedeHHs
3acTocoBaHO: 17 momepeHbO HABUYEHUX HEWPOMEpPEekKEeBHX MOJENeH, CTBOPEHHX Ha OCHOBI
MOTIEPEIHIX JOCIIDKEHB; HelpoMepexkeBy 0i0mioTeky Stanza juist po3mi3HaBaHHS IMEHOBaHHX
cyrnocrteit (NER); dpeiimBopk Flask mist opranizauii BebinTepdeiicy; monens FastText, anantoBany
n0 crnenu@iKd aHajgizy MpOMaraHJMCTChKUX TIOBIJOMJIGHb IUIAXOM JOHaBYaHHs. [lpuxman
MOB1JIOMJICHHS Ta HOT'0 aHaJli3y aBTOPUTETHUM JKEPEJIOM HaBeIEHO Ha PUCYHKY 2.

VY xomi nochijkeHHs e(EeKTHBHOCTI 3alpOlOHOBAHOIO METOAY BHUSBJIECHHS OO €KTIB 1
NpUHOMIB ITponaralan OyJio BCTAHOBJICHO, IO PE3YJIbTaTH, OTPHUMaHI 3a JIOTIOMOTOI0 PO3POOIIEHOTO
HiAX01y, AEMOHCTPYIOTh BUCOKY KOPEJISLIIO0 3 eKCIEPTHUMM OIlIHKaMH, IpejcTaBieHnuMu LlenTpom
CTpaTeriyHux KoMyHikamii [18].
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Lli Tean npo Hi6uTO 3nomknsaHHa ykpaiHcbkux BilicbkoBux Ta pemopanisaduito
BiicbkoBoCNy>XX60BLIB Manu Ha MeTi:

nuckpenutyBaTu 36poiiHi Cunu, HauioHansHy MBappito Ta iHWI Bili-
cbkoBi dpopMyBaHHS B o4ax rpomMapsH YkpaiHu;

nepekoHaTu rpomapgsH YkpaiHu He BcTynatv o nas ykpaiHcbkoro
Biicbka, a gitouunx BiicbkoBoCcny>k60BLIB — 3BINbHATUCSH i3 MOro Nnas;

Hapgatn BaknueocTi Telegram-kaHany «Haullltaby» ak pkepeny
HiIBUTO yHikanbHWX HOBWH, Npo aki «He
poanosicTb» BilicbkoBe komaHayBaHHA Hastiraty 4
VYkpaiHu, Wwo6 saBoioBaTu AOBIpY Bif- = oA
cbkoBocnyrk6oBuis-nignucHukie, 3 no-
panblo MeTok cnoHykaTu ix ginuTuce
iHdpopmauieto, 3okpema, cnyk60Boro i
TaemHoro xapakTtepy;

Okpemoto cknagosoto kamnaHii i3 «BUCBITNEH-
HA MopanbHoro saHenagy 3CY» € aHoManbHoO
Benuka kinbkicTb nosipomneHb «HaulliTaBy»
npo camory6cTBa BiicbkoBocnysk6oBUiB. 3a
2019 pik 6yno 3adikcoBaHo woHalimeHwe 38
nosigomneHs, B 2020 - woHanmeHwe 19, a B
2021 - 20, y akux He 6yno HaBepeHo >koaHUX gokasis, wWo ui icTopii cnpasai
manu micue i B Tomy Burnagi, B skomy ue nopasas Telegram-kaHan.

PucyHok 2. AHati3 MOBiIOMICHHS [0 MiCTUTh ITPOIAraHay Bil aBTOPUTETHOrO kepena [18]

JIns minTBep/KeHHST HAaBEACHO MPHKIAM aHaJi3y JOMKCY 3 MPOMAaraHAMCTCHKOTO KaHATy
(pucyHOK 2). ¥ npomMy NpuKiIai pe3yabTaTd aBTOMAaTHYHOTO aHali3y, BAKOHAHOTO 3a JOITOMOTOI0
PO3pOOJICHOr0 METOy, CIiBHATM 3 BUCHOBKAaMH eKcrepTiB. Lle cBiquuTh mpo 34aTHICTH METOIY
TOYHO ieHTU(IKYBaTH 00’ €KTH MPOIAraH Ta BU3HAYATH, SIKi IPUHOMHU OYII0 BUKOPUCTAHO JUIS X
MaHIIyJISTUBHOTO BILIHBY.

OTtpumani pe3yibTaTH MiITBEP/DKYIOTh MPAKTHYHY 3aCTOCOBHICTH PO3POOJICHOTO MiAXOTY
JUIL  aBTOMAaTHU30BAaHOTO AaHANi3y NpPONAraHAWCTCHKUX IOBIIOMJIEHb 1 MOXIHMBICT HOro
BUKOPUCTAHHS B PEAJbHUX YMOBAX JUIS MIATPUMKH poOOTH aHATITHKIB Ta TOCTiAHUKIB. Pe3ynbraTu
HaBe/ICHI Ha PUCYHKY 3.

« C O 127.00.1:5000/analyze * O @ O (
Analysis Result:

The set of named entities with semantically close objects according to the analysis of contextual dependencies:
3CY, ORG, spaHui (0.21), synuus (0.17), cynepeuka (0.17), BuHukHyTH (0.16)

Aoxbac, LOC, ama (0.26), Bunusatu (0.22), pasom (0.20), paxiwe (0.17)

AoHeubkui obnacte, LOC, BoHu (0.17), BuHukHyTH (0.15)

Set of propaganda objects in the text:

! CmMepTb ABOX Bilt ocn is 3CY B ceni Ha i

Ha Bownbaci oavH 3 BificbkoBocnyxGosuis 3acTpenvecs 3 TaGenbHoi 36pof, Konv BpaHLi 3HaLOB Nopyy 3 cofoio Mepmm CBOFO TOBapuLLUa no cnyxGi.

3a iHhopMaLlielo BUAAHHA, MaioP | CepXaHT Pa3oM BUNMBANM Y XUTNOBOMY GYAMHKY, NICNA HOTO MDK HUMM peuKa, Aka f y Giitky Ha nosip'i.

Maviop cunbHo nobus cepxakTa, WO ToV BTPATHUB CBIAOMICTb i 3ameps Ha Bynmui. BpaHui BificbkoBocnyxGoseLb BURBHD ToBapuLWwa no cnykGi MepTBUM i 3acTpenveca 3 TaGenbHol 36por.

Sk nogigomnsanocs paxiwe, 8 JoHeubkin obnacTi y xutnosomy GyanHKy 3HaiLLNM MepTBUMIA ABOX Bilicbkosux 3CY. 3a iHdopmauieio 3MI, y 0AHOMO 3 HUX, Maiopa, BOrHenanbHe NopaHeHHs ronosw, y
napyroro — 3abol ronoeu.

Power of techniques used and their associated thematic objects:

The used techniques:
K Loaded Language. Expressed at 0.582
2. Repetition. Expressed at 0.317

Assessment of propagandistic objects belonging to the used techniques:
{3CY (ORG) Added thematic set: [BpaHLi, Bynuus, cynepeska, snuukuym]) Assessments of belongmg [Loaded Language 0.593; Repetition 0.612]
{nonb6ac (LOC) Added thematic set [ama, BunuBaTi1, pasom, p of [Loaded Language 0.407; Repetition 0.35]
{noHeubkui obnacts (LOC) Added thematic set: [BoHu, BMHMKH)’TM]) Assessments of belonging: [Loaded Language 0.361; Repetition 0.71]

Pucynoxk 3. BizyanbHa iHTepHpeTali€eo NpUHHATUX pillIeHb 32 METOI0M BUSABIICHHS 00’ €KTIB
MpoTTaraxan

AHaJi3 3a J0MOMOTOI0 PO3pOOJICHOTO MPOTPAMHOTO 3a0€3MEUCHHS TTOKa3aB BUKOPHUCTAHHS
nponaranaucTebkux npuiiomiB «Loaded Language» (0.582) 1 «Repetition» (0.317), inenTudikyBan
00’extn mpomnaranau (Hanpukian, 3CY, JonOac, JloHempka 00y1acTh) pa3oM 13 CEMaHTUYHO
OMM3BKUMH CJIOBAMH Ta OLIHUB BiAMOBIIHICTH 00°€KTiB mponaranau jao npuiiomis: 3CY («Loaded
Language» — 0.593, «Repetition» — 0.612), Hounbac («Loaded Language» — 0.407, «Repetition» —
0.35), Jonemnpka obmacth («Loaded Language» — 0.361, «Repetition» — 0.71), 3 momampimmm
Bi3yaJIbHUM B1100paKeHHSIM 3HAWJIEHUX 00’ €KTIB Y TEKCTI.
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VY pe3ynabTaTi MOCHIKEHHS 3ampolOHOBAHOTO METOAY BHSBIICHO, IO BiH J03BOJISIE
OTPUMYBATH PE3YJIbTATH, SIKI KOPETIOIOTh 13 pe3y/bTaTaMH 3 aBTOPUTETHUX MapKOBAHUX JDKEpeT. 3a
JIONIOMOT'OI0 3aCTOCYBaHHSI KOMIUIEKCHOTO ITiZIXO/Ty 10 BUSIBJICHHS IPONIaraH/Iy, Ta 3 BUKOPUCTAaHHIM
Bi3yaJIbHOI iHTEpHpeTalii pe3yabTarTiB, BUPIIIYETHCS 33aa4a B3a€MO3B’SI3KIB MK BUKOPHCTAaHUMU
npuiiomMmaMu Ta 00’ €KTaMu IpOTaraHy.

BUCHOBKM.

P03po6neH0 METO/ BUSBJIICHHS 00’ €KTiB nmpornaraHn 3aco0amu o6p061<1z1 MPUPOTHOT MOBH 3
BI3yaJbHOIO IHTEPIPETALIEI0 NPHITHATAX PILICHb, L0 BIAPISHAETHCS Bil ICHYIOUHUX PO3LIMPCHHSIM
MHOXWHH 00’€KTiB NPONAraHiu 3aBISKH JIOJaBaHHIO BaplaHTlB iX CJIOBECHHMX TMOJaHb 1
BUKOPUCTAHHIO KOHTEKCTHUX BIKOH JUIsl BHSIBJICHHS B3a€MO3B’SI3KIB MK BHKOPUCTAHHUMH
npuiioMamMu Ta 00’€kTamn mponaranau. Lle mokpainye pesynbTaTé BHSBICHHSA Ta X BisyasbHe
MpEJCTaBICHHS. METoA BKII0YAa€ PO3MI3HABAHHS IMCHOBAHUX CYTHOCTEH, IONEpPEIHIO O0OpOOKY
TEKCTY, PO3IINPCHHS. MHOXKHHH 00’€KTIB [POIaraHIH, HOGYI[OBy KOHTEKCTHUX BIKOH, OIIHFOBAaHHS
piBHS BUKOPHCTAHUX MPHUIOMIB Ta TOOYIOBY BXIHMBHUX 3B’S3KIB MK MpHHOMaMU Ta 00’ €KTaMH
Iponaras/iy.

JIsl MiBUIIEHHS TOYHOCTI Ta SIKOCTI BHUSIBJICHHS IPUHOMIB Ta 00’€KTIB MpomaraHau 3a
CEeMaHTHYHMMH MapKepamu y MOBIIOMJICHHSIX 3ac00aMu o6p061<1/1 IPUPOJHOI MOBH 3 MOAAIBIIOD
IHTEPIPETALIEI0 PE3YIbTATIB, OylI0 PO3POOICHO IMIAXIA, SKUH H03BOISE meHTn(pmyBaTH 00’€exTH
MpONAraHx y TeKCTax, a TAKOXK Ha KOTO i Ha 10 CHPsIMOBaHi HpOHaFaHI[I/ICTCLKl npuiiomu. Meron
BUpILIYE MPOOIEMH BIACYTHOCTI KOMIUICKCHOTO aHajli3y B3a€MO3B’SI3KIB MPUHOMIB Ta 00’€KTiB
MporaraHayd B TOBIIOMIICHHSX 1 BIJCYTHOCTI y3arajdbHEHb I OO’€KTIB MpoMaraHam Ta iX
aIbTEPHATUBHHX 3raJIoK. EKCIiepUMEeHTAIBHO J0BEACHO eheKTUBHICTH MIIXO/Y, IO JO3BOIISE, OKPIM
TNOLIYKY NER 3a nonomororo 6i6miorexku HelpoHHOI Mepexi «STANZAY, po3muproBaTi nepesik
00’€KTiB [poMaratau 3a J0MOMOroio 6i6miorekn MmammHHOTO HaByaHHs «FastText», a Takox
OIIIHIOBATH 1X 3B'S30K 3 BHUKOPHUCTAHUMH MpUHOMaMU. Pe3ynbTaTH METOAYy KOPETIOITh 3
eKCIepTHUMH OI[IHKaMH, a Bi3yallbHa aHAJITHKA 3a0e3leuye HAOYHE CIIOCTEPEKEHHS 00 €KTIB
BIIMBY B PaMKaX MPOMAaraHAMCTChKUX MIPUHOMIB.
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[Hasawk O.M., Mimyk M.B., 3a6os0THa A.QO., JliToBcbka O.B., Koctincskuii J1.0.,
(Hayionanvnuii ynieepcumem «Jlvsiscoka nonimexuikay, m. Jlvsis, Ykpaina)

HEWPOMEPEKHA TEXHOJIOI'TA PO3III3HABAHHSA KOMILIEKCHOI
JAIAJBHOCTI HPOMHUCJIOBOI'O ITIEPCOHAJLY 3A JTAHUMU CMAPT-
I'OANHHUKIB

Anomeuia: Cyuacni nioxoou 0o po3niznaéamms KOMRLEKCHOI M0OCbKOI OIIIbHOCMI 6 peanbHoMy Haci
BIOKpUBAIOMb HOBI MOdNCIUBOCTI 011 ix euxopucmanns 6 Indycmpii'5.0. 3a paxynok ybo2o Modicha nokpawumu a00UHo-
MAWUHHY 83AEMOOII0 MA OYIHKY NPOOYKMUGHOCMI NpayigHuKie. Y pobomi npedcmagieno cucmemy Oiisi pO3Ni3HAGAHHS
KOMNJIEKCHOT OINIbHOCME NPOMUCTIOB8020 NEPCOHANY Y 6HYMPIWHIX TOICIMUYHUX CUCMEMAX 3 BUKOPUCIAHHAM CMApm-
200uHHuKie. Po3pobneno annikayiio 3a 00nomoeor sKoi 3i0pano yHIKanbHull Habip Oanux. 3acmocoaHo 6useleHHs
aymaaepie y 3i0panux OAHUX mMa 321A0XCY8AHHA WYMIE 3a 0onomoeow ¢inempis. [na knacugikayii npocmux
akmuerocmell gukopucmano Heviponny mepexcy DenseNetl21, saxa docsaena Fl-oyinku 91,01%, onsa komniexchux —
87,44% 3i cmpamezieio cninbHUX OaHUX.

Knrouosi cnosa: cmapm-200unHUK; NPOMUCTOSUTL NEPCOHAN;, OA306ULL KIACUPDIKAMOP, KOMNIEKCHA OisIbHICMb,
Kaacupixayis, nepeddayeHms.

Abstract: Modern approaches to recognizing complex human activity in real time open up new opportunities for
their use in Industry 5.0. This can improve human-machine interaction and employee productivity. The paper presents a
system for recognizing complex activities of industrial personnel in internal logistics systems using smart watches. An
application has been developed with the help of which a unique data set has been collected. Outlier detection in the
collected data and noise smoothing using filters were applied. For the classification of simple activities, the DenseNet121
neural network was used, which achieved an F1 score of 91.01%, for complex activities — 87.44% with a shared data
strategy.

Keywords: smart watch; industrial personnel; basic classifier; complex activity; classification; prediction.

ITocTanoBKka npodeMu

BuxopuctanHs nopTaTUBHUX TEXHOJOTIN JUIsl po3Mi3HaBaHHS Jt0AChKoi aisnbHOCTI (PJII)
Ha0yJI0 aKTUBHOTO PO3BUTKY 1 3HAMIILIO 3aCTOCYBAaHHS B: MEIUIIMHI (IETEKIis MaJiHb, eniiencii Ta
MOHITOPHHTY akTHBHOCTI [1, 2]); 6e3neni (BusiBneHHs aHoMmainii [3]); cropTi (aHami3 TpeHYBaHb 1
BUTpaTH Kanopii [4, 5]). 3 nepexoaom 1o Inaycrpii 5.0 Bigkpuiaucs HOBI TOPU30HTH BUKOPUCTAHHS
PJIJI s mokpaleHHs JIF0JUHO-MAIIMHHOI B3a€MOJIl y CUCTEMH IHTENEKTYaIbHOTO YIPaBIiHHS
nianpuemctBamu [6-8]. KimrowoBrM eneMeHTOM TS TOCTIKEHb B TAKMX CHCTEMaXx € JlaHi 3i0paHi 3a
JIOTIOMOT'OF0 CEHCOPIB SIK 3 TEXHIYHUX CHCTEM TaK 1 3 MPOMHCIIOBOTO ITEPCOHAITY.

@®enepatuBHe HaByaHHA (PH), sk cydacHuil MeToJ] MAIIMHHOTO HaBYaHHS, O3BOJISIE
3aiiicHIOBaTH Oe3MneuHuii 301p Ta aHai3 iHpopMallii He JUIIE 3 TEXHOJIOTIYHOTO O0JIaIHaHHS, aJie 13
HOCUMHX TPHCTPOIB MPOMHUCIOBOIO MEPCOHATY TAaKUX SK CMapT-TOAMHHUKM Oe3 mepenadi 1o
LEHTpaJIbHOTO cepBepa. Lle 0co0arBO BaXKJIMBO B YMOBAaX MPOMMCIOBOI €KOCUCTEMHU YKpaiHH, je
NUTaHHS KOH(DIIEHIIHHOCTI Ta 3aXUCTY JaHUX € KpuTuuHuMU. @H 103BoIsIE paltoBaTH HaBITh B
yMOBax HecTaOUIbHOI 1HPPACTPYKTYpH 3 YaCTMMU MepeOosiMM 3B’SI3Ky B yMOBax BIHHHU 13
3a0e3MeyeHHsIM aBTOMaTHU3alli MPUUHATTA pIlIeHb Ha OCHOBI JIOKAJbHO 310paHUX [aHUX B
pearbHOMy uaci. lle MOXJIMBO 3IIHCHMTHM 3a paxyHOK: BUKOPHUCTAHHS JIOKaJbHHMX Oydepis,
acUMETpUYHOro rpadiky CHUHXpOHI3alli, BUKopucTaHHs Edge-cepBepiB, CTIHKHX MPOTOKOJIIB
nepeaayi JAaHuX, JOKaJbHOI aBTOHOMHOCTI, Dropout-pe3ncTeHTHOCTI, CTUCHEHHsS Ta OOMEXEeHHs
o0csry nmanmx. Taki cuctemMa MOXHA JIETKO aNanTyBaTH 10 MOTPeO KOHKPETHUX YKpPaTHCHKUX
BUPOOHHUIITB, CIIPUSIOUH 1X KOHKYPEHTOCIIPOMOXHOCTI Ha MDKHAPOAHOMY PUHKY.

AHaJi3 ocTaHHIX myOaiKkamnii

3riJIHO MPOBEECHOTO aHAIII3Y JITEPATYPHUX pKepen, 3aranom, PJIJ MmoxHa po3ninuty Ha 2

UMM 3aBaaHb. [Ipocta moBToproBaHa moBesinka (Oir, cumainHs) [9-12] Ta ckiagHi KOHTEKCTYalbH1
it (po6oTa, BoainHs) [13-17] siki BuMararoTh kinacudikariii, CKIaIHUX MOJIeNIei Ta pOOOTH B PeXKHMI
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peanpHOTO Yacy. [Ipocta moBemiHKa Bke €(EKTUBHO PO3IMI3HAETHCS, ajleé OCHOBHA yBara B I[bOMY
JOCITIJKSHHI MOJIATae B MPOrHO3YBaHHI CKIIAJHUX i, 10 MalOTh MPaKTHYHE 3HAUYCHHS B Cy4acHIl
IHTEJEeKTYalbHIN 1HIYCTpIii.

butbmiicTh iCHYIOUMX pillleHb JUISi MOHITOPHHTY TOBEIIHKHA IPOMHCIIOBHX IIPAIiBHUKIB
0a3yloThbcs Ha aHajizi 300pakeHb 3 KaMep Ta OTPUMaHUX 13 MOPTATUBHUX CEHCOPIB abo iX
koMOiHarii. OfHaK Mmiaxia, 3aCHOBaHUN Ha 300pa)KCHHSIX, MA€ CBOi HEIOJIIKH, OCKUILKHA HaKIIaJae
0OMeXEeHHS Ha TPAEKTOPIi pyXy MIPOMHUCIOBOIO NEPCOHANY, SKHI Ma€ 3HAXOAUTHUCS B 30H1 BUIUMOCTI
kamep. Lle € HeMOXKIMBUM Ha MiJNPUEMCTBAX, OCKIJIBKU MPALliBHUK MIOBUHEH BUKOHYBATH Pi3HI il
Ta OJJHOYACHO CIIBIPALIOBATH 3 JEKiJIbKOMa aBTOHOMHUMHU TpaHcnopTHUMH 3acobamu (AKT3) un
IHIIUMHU POMUCIOBUMHU TEXHIYHUMH 00’€KTaMu. ToMy JOCHIIKEHHS 30CEpEeKEHO Ha po3pooii
MIIXO/IIB O KOMILJIEKCHOT Kiacudikallii Ta MporHo3yBaHH1 IisNIbHOCTI IPOMHUCIOBOTO TIEPCOHAITY 3
BUKOPHUCTAHHSM CEHCOPiB BOYIOBAaHUX Y CMapT-TOJAMHHUKH.

B konTtekcTi cmapT-iHayctpii y [16] npencrabineno anroputm XGBoost mokazaB Halikparii
pe3yNabTaT s Kiacudikalii JisIbHOCTI B JIOTICTHYHUX cucTeMax. PillieHHS Ha OCHOBI Bifieokamep
1 moptatuBHUX ceHCOpiB [17-19] moTpeOyroTh 3HAYHUX pecypciB 1 OOMEXYHOTh MOOUIBHICTH
npaniBHUKIB. AnbTepHaTuBHUHN miaxin y [20] BukopucroBye cencopu emHocti Tina Ta IMU, ane
BUMArae cIieriajizoBaHoro ooJaJHaHHs.

Meta po60TH Ta NOCTAHOBKA 3aBJaHb

Merta poGoTH: po3poOka HEWPOMEPEkKHOI CUCTEMU aHali3y KOMIUIEKCHOI AisJIbHOCTI
MIPOMHCIIOBOTO IEPCOHATY B PEAIbHOMY Yaci Ha OCHOBI JIAHUX 3 CEHCOPIB CMAPT-TOAMHHHKIB. [J[yist
300py JaHUX HEOOX1AHO pO3pOOUTH aIlIiKallio, sKa MOXke 00poOIsiTH iH(OpMalliio Ha MPUCTPOi abo
IepeaBaTH 1 Ha KpaloBUH cepBep.

ITocTanoBKa 3aBaaHb:

1. Po3pobutu cucremy 300py HOaHMX 31 CEHCOPIB CMapT-TOJMHHHKIB JUII MOHITOPUHTY
TiSUTBHOCTI IEPCOHAITY B pealbHOMY 4aci.
3i0partu 1aHi Mpo THIIOBY aKTHBHICTH MIEPCOHAITY HA IMiIIPUEMCTBAX sIKi npamoroTs 3 AKT3.
3. 3acTrocyBaTH METO/M BUSBJICHHS Ta YCYHEHHs BHKHUJIB Ta IIYMIB Yy JaHUX aKcelepomepa Ta
ripockoria.
4. TligrotyBaTH AaHi JJis TPEHYBaHHS MO/eJel MallMHHOTO HABYAaHHS.
Po3poOutu anroputmMu Uit kiaacudikaili KOMIUIEKCHOI JAISUIBHOCTI, IO MIATPUMYE
posnoaineni oourcnenHs Ta ®H ta nepeBiputu oro epeKTUBHICTb.

Cucrema 300py iHdopMailii 3a 10MOMOro10 CEHCOPiB CMAPT-TOAMHHUKA.
Po3pobneno po3noziieHy cucreMy 300py Ta aHalli3y JIaHUX SIKa CKJIAJA€ThCS 3 PO3YMHOTO
ronuaarka Samsung Galaxy Watch 5, momatky nns WearOS ta xmapHoro cepsepa. JlomaTox
Harnucanuii MoBotro Kotlin aist onepariiinoi cuctemu WearOS niepenbauae 30ip gaHHX 33 JOIIOMOTOO
CEHCOPIB CMapT-TOAWHHHIKA; KOHTPOJIb MPOLIECY EKCIIEPUMEHTY uepe3 iHTepdeiic; nepeayy JaHux y
xMapy. XmapHuil cepBep mnooOynoBaHuii 3 BukopuctanHsiM MySQL-Server na mmardopmi PaaS.
ATuTiKaIis 103BoJIsi€ OHOYACHUHM 301p TaHUX BiJ KUIBKOX Cy0’€KTIB TPOMUCIOBOTO nepcoHainy. Ha
puc. 1 TpouTIOCTPOBAHO 3arajbHy CTPYKTYpPY PO3po0JIeHOT CUCTEMH 1O 300pY J1aHUX.

N

o
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3-ax accelerometer (gravity removed) and 3-ax
gyroscope, 100 Hz sampling rate, 3s windows

Puc.1. Ctpyktypa po3pobieHoi cuctemMu 300py TaHUX.

3a IOMOMOTo PO3pOOICHOI MpOrpaMHOi aruTiKamii Juisi cMapT-TOJUHHUKA 310paHo JaHi 3
TPUOCHOBUX akKcelepoMeTpa Ta Tipockoma (micTe KaHamiB) 3 yactoror 100 I'm g m'stu
MPEJICTAaBHUKIB MPOMHUCIOBOTO TEPCOHANY IO JBOX arperarax, 3arajoM 3,28 TOAWHH
niecTuKaHanbHuX JaHux. KoxkeH 3-cekyHaHuii (parMeHT JaHuX pa3oM 3 iHQopMalli€ro (Ka pyka,
MITKH Yacy, i1eHTH(IKaTOp cy0’ €KTa) CTUCKAETHCS Ta HAJCHIAETHCA K (ppeiM nanux. OparMeHTH
MEHIIIE TPHOX CEKYH]I BIAKUAa0ThCS. Kanpu 3 0IHAaKOBUMHU MIiTKaMH 4acy 00’ € JHYIOThCSI B TPYIIH, a
HETIOBHI TPYIH BiIKHIAIOTHCS.

MetopoJiorist koMmiuiekcHoro PJ1

3arponoHoOBaHa METOI0JIOTisl BAKOPUCTOBYE CTEKIHT Kiacu(]ikaTopiB sl pO3Mi3HABAHHSA Ta
IPOTHO3YBaHHS TUITY arperaTy Ha OCHOBI CUTHAIIIB CeHCcOpiB. ba3oBuii kiacudikarop HaBUa€eThCs HA
3-cekyHIHHUX 6-KaHATBHUX NaHuX, 00pobiaernx HBII, mis po3mizHaBaHHs 0a30BUX aKTUBHOCTEH, a
MeTaknacudikaTop Kiacudikye arperaTd Ha OCHOBI IOCHTIJIOBHOCTEH pe3yabTariB 0a30BOro
Kjacu@ikaTopa, 3 BUKOPUCTAHHAM TpaHC(EpHOro HaBUAHHS JJIS MOKPALIEHHS NMPOJYKTUBHOCTI 1
YHUKHEHHS TIepeHaBYaHHS.

Ha nepmomy erani naHi oOpoOsSIOTECS Uil YCYHEHHsI ayTJIaepiB Ta 3IJIaKyBaHHS IIyMiB,
CTBOPIOIOYM HETIEPEPBHI 6-KaHaIbHI MOCIIJOBHOCTI CHUTHAJIB, L0 BIJOOPa)KalOTh BUKOHAHHSA
arperatry. Ha napyromy erami 3actocoByeThcsi HemepepBHe Belier mneperBopeHHs (HBII) no
KO)KHOTO KaHayly curHamiB. TpeTii eram BKJIloyae TpeHyBaHHS 0a30BOro kiacudikatopa amis
po3mi3HaBaHHS 0a30BHX AaKTUBHOCTEW, IMICIS 4YOro MITKM JUIsi HUX IepeBU3HadaroThcs. Ha
YeTBEPTOMY €Talll MeTakJIacu(iKkaTop Ta MPEAUKTOP HAaBYAIOTHCS HA MOCIIOBHOCTSIX PE3Y/bTaTiB
6a3oBoro kiacudikaropa /iy po3Mi3HaBaHHS KOMITJIEKCHOI JTISITbHOCTI aKTUBHOCTI.

Bukunum B JaHMX MOXYTh 3HU3UTH TOYHICTh CHCTEMH PpO3MI3HABAHHS KOMILJIEKCHOT
JUSIBHOCTI, TOMY OyJIO 3aCTOCOBAHO pi3HI METOJU BUSIBICHHA ayTiaepiB. Ha puc 2. mokasani cepii
JAaHUX 3 BUKUJAMH, BHM3HAYEHMMH pI3HUMH MeETOAaMHu: cTaHaapTHoro BinxuieHHs (STD),
norapudmiunoro crangaptHoro BiaxuieHHs (Log-STD), mpocTopoBoi kiacTepu3aiiii J0JaTKIB 13
mymoM Ha ocHoBi migbHOCTI (DBSCAN), mikBepTukansHoro posmaxy (IQR). UepBoHi Touku
MOKa3yIOTh BUKUIH JJIsT KOKHOTO METOMY.

™= Tl
| ?"wwﬂl]q"""r‘l‘f\lh\ﬂj'“!"h‘ Ll
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Puc. 2. BusBnenns BukuaiB 3a qonomororo metonis STD, Log-STD, DBSCAN, IQR.

Sk BHIHO, MO Pi3HI METOAM BUSBIAIOTH Pi3HY KimbKicTh BukuaiB. DBSCAN Busiise
HaOLIBITY KUTBKICTh BUKH/IIB, 110 MOXKE CBIAYUTH PO HOTO YyTIMBICTh A0 aHOMA y nanux. s
MiHIMi3aIii BIUIMBY IIIYMIB BHKOPHCTOBYIOTHCS METOAW (ibTparlii, 30KpeMa KOB3HE CEpEIHE,

Tp Casinpkoro-I'onest (quB. puc.3)

of smoothing techniques to smooth and restore lost data

S 160 260 330 aco 560
Index

Puc. 3 TlopiBHSIHHS METO/IIB 3IJIAJKEHHS 32 IOTIOMOT0I0 (iIbTPIB

SIK BHITHO TIO pe3yJbTaTax puc. 3. IMIyMH JOIUIBHO 3TJIAJKYBATH 32 JOMOMOTOI0 JIOKAJIbHOI
perpecii. [Ipote ans ii peanizamnii HeoOXiHa TOCTATHS KUTBKICTh JAHUX y KOXKHOMY 1HTEpBai.

Buxigai nmani 3a gomomMoror HemepepBHe BeiBier mneperBopeHHs (HBIT) wmosxHa
OpPEJICTABUTH K JBOBUMIPHY TEIUIOBY KapTy (ckajorpamy). BoHa 103BOJISIE TIEpeBECTH
KiIacuQikaIifo YacoBHX pAMiB y 3amady kiacudikamii 300pakenb. ToMy gami MoKHA
BUKOPHCTOBYBAaTH HAaIPUKJIaA 3ropTKoBi HeilpoHHi mepexi (3HM). Jlns miei poGotu obOpaHo
MaTepUHCHKHI BelBieT Mopie 3 mapamerpamu a Big 0 10 256 i b Big 0 mo 300. Taki mapamerpu
MIATBEPDKECHI MONEPETHIMH JOCIIDKEHHIMH TSt 3a1a4d PJI/] Ha 0CHOB1 MOPTaTHBHUX CEHCOPIB |3,
12].

[ToniepeAHHOTO OMpALIIOBAHHS JAAHUX AJII HEHPOHHUX MEpEX 3I1MCHIOITH y HIICTh €TaliB.
[lepumuii eranm BKIIOYae Kaapu Mo3a €KCIEpUMEHTOM. J[pyruii BUSBIA€ Ta BUILISE PO3PUBH Mixk
kagpamu. Tperiit 3BoauTh mocniioBHOCTI 10 20 kaapiB (60 cexynn). YerBepruii Bukonye 50%
MEPEeKPUTTS JUIsl po3mupeHHs Habopy. II’stuif posninse HaOip HA MiIMHOXHUHHU IS HABYaHHS,
TeCTyBaHHS Ta Bamijamii. Jms po3mijeHHs MaHUX BHKOPHCTOBYIOThCS 1B1 cTpaterii. [lepa
3a0e3mnedye yHIKaJdbHI J1aHl A KOXKHOTrO Kiacugikaropa, a Apyra — Oijbllle JaHUX U1 MeTa-
knacugikaropa. loctuii etan Briatovae 3acrocoByHHs: HBII 3 MaTtepunchkum BeiiBierom Mopiie Ta
napameTpoM MacmTadyBaHHs Bif 0 10 256.

Sk 6a3o0Bwuii kiacugikarop BUkopuctano moaenb DenseNetl21, cnemianbHo aganToBany s
3agau PJIJI, monepennbo HaBuena Ha Habopi KU-HAR [12, 21] 3 Fl-ominkoro 97,52%. Monens
a/1alITOBaHO, 3aMIHMBIIM BEpXHiH IIap Ha HOBHMH 13 4oTHpMa HelpoHamu (iHiLiamizaiis Xavier).
3amopoxeno 136 mapis ms podoT 3 Mmanmmu Habopamu garunx. HaBuanus nposoamiocs 100 emox
3 onrtumizatopoM Adam, Oatyem 32 Ta 3BOPOTHUMHU BHUKJIMKAaMHU Ui KOHTpoito. PesymbTaTtu
HaBEeEHO JJIs Halikpaioro 3 10 3amyckis.

Jaii nopiBHSAHO MeTa-KiaacudikaTopu Ha 6a3i apxirektyp LSTM, BiLSTM, GRU, BiGRU Ta
3HM. Haiikpamuii pe3ynpraT nokazana 3HM Ha nmiaAMHOXKMHI TeCTiB y Taou1. 1

Tabmuus 1. PesynbraT kinacudikariii 6a30Boro kiacudikaTopa Ha MiJMHOXHHI TECTIB.
Accuracy Precision Recall AUC F1-score
90.90% 91.33% 90.69% 97.26% 91.01%

[Ticns HaByaHHA Ta OIIHKU 6a30BOro Kiacugikaropa MITKH HaOOpy JaHUX Ul BCIX 3pa3KiB
OyJ0 OHOBJIEHO Ha OCHOBI PE3yJbTaTIB BiJ HEHPOHIB BEPXHHOI'O MOBHICTIO MIAKIIOUYEHOTO ILIapy
HaBueHoro 6a3oBoro kiacudikaropa. [ami 3actocoBaHO /Bi cTpaTerii Juis Kiacugikaiii arperaTis.
[Tpu nepuriit crparerii po3auieHHs 40% HaOOpy JaHMX BUKOPUCTOBYETHCS JUIsl HABYaHHS 0a30BOTr0O
kiacudikaropa Ta Bajijauii Meta-kiaacudikaropa, iHm 40% 11 HaByaHHA MeTa-Kiacudikaropa Ta
Baymijaiii 6azoBoro kiacudikaTopa, Ta octanHi 20% s TectyBaHHs. L{s crpareris 3abe3nedye
VHIKaIbHI JIaHl JJisi HaBYaHHS MOJIEJed KOXXHOTO PIBHS, IO € HAWKpalIUM CIIEHApieM, ane sKa
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MOTEHIIIHHO HaJa€ HEJAOCTATHBO JaHMX JJis HaBYaHHS MeTa-KiaacudikaTtopa, OCKiIbKH BiH HE
BUKOPUCTOBYe TaHcepHe HaBuaHHs. [Ipyra ctpateris Buminge 40% Ha HaBuaHHS 000X
knacudikaropis, me 40% Ha Bamigamito 0a3oBoro kijacudikaTopa Ta  JOHABYAHHS
metaknacudikaropa i pemty 20% nHa TectyBaHHs. [[pyra cTpaTeris Hajae OuUIblIe TaHUX Ui METa-
kinacudikaropa, ajge MOXKE€ NPH3BECTH A0 TOro, IO BiH He 3adikcye MOMUIKH 0a30BOTO
kiacudikaropa Ha HOBHX JIaHUX.

Tabmuus 2. Pesynpratu knacudikarii Mera-kiacugikaTopiB Ha MiAMHOKHHI TECTIB MEPIIO0
CTpareriero

Classifier Accuracy | Precision | Recall AUC F1-score
CNN 79.17% 79.01% | 79.17% | 84.34% | 79.07%
Single-layer LSTM 75.00% 76.11% 75.00% | 78.03% | 75.32%
Multi-layer LSTM 76.39% 77.15% | 76.39% | 77.41% | 76.63%
Single-layer BiLSTM 77.78% 78.84% | 77.78% | 79.13% | 78.07%
Multi-layer BiLSTM 75.00% 75.49% | 75.00% | 79.91% | 75.19%
Single-layer GRU 76.39% 76.21% 76.39% | 84.51% | 76.28%
Multi-layer GRU 75.00% 75.00% 75.00% | 79.92% | 75.00%
Single layer BIGRU 75.00% 74.45% 75,00% | 78.13% | 74.48%
Multi-layer BIGRU 73.61% 74.42% 73.61% | 79.68% | 73.89%

Mopenb Ha ocHOBI CNN pnocsarna Fl-ouiaku 79,07%, a ognomrapoBa mepexa BiLSTM —
73,89%. Inmi moxeni nmokazamu F1 6imseko 76%. [pyra crpareris moainy HaBeneHa B Talmmi 3.

Tabmuns 3. Pesynbratu kinacudikaiii Meta-kiacu(ikaTopiB Ha MiAMHOXKHHI TECTIB IPYTOIO
CTpareriero.

Classifier Accuracy | Precision | Recall AUC F1-score
CNN 87.50% 87.43% 87.50% | 92.40% 87.44%
Single-layer LSTM 69.44% 71.42% | 69.44% | 76.93% | 69.96%
Multi-layer LSTM 72.22% 72.75% 72.22% | 78.70% 72.43%
Single-layer BiLSTM 72.22% 75.04% | 72.22% | 78.43% 72.75%
Multi-layer BiLSTM 73.61% 74.42% | 73.61% | 78.76% | 73.89%
Single-layer GRU 72.22% 76.08% 72.22% | 79.74% 72.77%
Multi-layer GRU 72.22% 72.22% 72.22% | 80.84% 72.22%
Single-layer BiGRU 72.22% 75.04% | 72.22% | 77.93% 72.75%
Multi-layer BIGRU 73.61% 76.92% 73.61% | 80.84% 74.13%

pyra crpareris mominy mnokasamna Outeiny edextuBHicth miuss CNN 3 Fl1 87,44%, B
nopiBHsHHI 3 mepmior crpareriero. Mogemi LSTM, BiLSTM 1 BiGRU Takox mokaszanu Kparii
pe3yNnbTaTH 3 JOJATKOBUMH IIapaMHU.

BUCHOBKH

VY 1poMy JOCTiIKEHHI po3po0IeHo OGaraToeTarHuil MiIXil y peXuMi peabHOro vacy JUls
KOMIUIEKCHOI KJjlacuikallii aKTUBHOCTI IPOMHUCIOBOIO TEPCOHATly Ha MIANPUEMCTBAX SKi
BukopuctoByioTb AKT3. BiH BUKOPHUCTOBYe CMapT-TOAMHHUKH, CTEKYBaHHS KJacH(iKaTOPiB,
BEUBJIET-TIEPETBOPEHB 1 TpaHCchepHe HaBYaHHS. Po3pobiieHo arutikaiiiro 11t 300py J1aHUX Ha OCHOBI
CMapT-TOJUHHMKIB. 310paHO YyHIKaJIbHMM HaOlp AaHUX BiA N'STH NPEACTAaBHUKIB IPOMHUCIOBOTO
nepconaiy. Sk 6a3oBuil kiacudikaTop BUKOPHCTAHO MOMEPEIHbO HaBueHy monaenb DenseNetl21,
aka nocarna Fl-ominku 91,01%. [{ns 6araTtoerantoi knacugikaiii MopiBHIIN MeTakiIacupikaTopu
Ha ocHoBli CNN, LSTM, BiLSTM, GRU i1 BiGRU. Haiikpamii pe3ynbTaTel mokazajga MoJieib Ha
ocHoBi CNN 3 BUKOpUCTaHHSIM CIUIBHUX JIaHUX ISl HaBYaHHS, oTpuMaBiu F1-ominky 87,44%.

VY MailOyTHbOMY IJIAHYETbCS PO3IIMPEHHS JaHMX 1 BUKopHcTaTH TiopuaHi moaeni (CNN-
LSTM, CNN-GRU) pansa mnokpamieHHs TOYHOCTI. Takuii MigXil JErko IHTErpyeTbcs Ta
MacIITa0yeThCs B IHTENEKTYaIbHI CHCTEMH YIIPABIIHHS JIJIs1 ONTUMI3allii BUPOOHUYHX IPOIIECIB.
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YJIK 004.89
Herpos A. ., (Hayionanvnuii ynisepcumem «Jlvgiecoka nonimexuixay, m. Jlveie, Yxpaina)

INOKPAILIEHHS AKOCTI 3B’SAI3KY GSM MEPEXI RL ATEHTOM

Anomauin: I'nobanvua cucmema mobinvroco 38'a3ky (GSM) opmyemuvea bazosumu cmanyiamu, wo HAOAIOMsb
AOOHEHMAM KAHAU MePedici Oisi KOMYHIKayil. 3a36uuail, sKiCmos KAHAI6 KOMYHIKAYIl Ha1aumosyloms 6a306801 cmanyii
HAAWMOBYIOMb 0OUH PA3 HA BeChb HCUMMEBUT YUK, WO € NPULUHOIO HEONMUMALLHO20 NOOLLY pecypcy, i SIK pe3yibmam
eipuoi’ skocmi 36’3Kky. YV yitl cmammi, nPONoHYeEmMbCsi BUKOPUCIMAHH A2EHMA HAGUAHHS 3 NiOKpinienHsm (RL) ons
OUHAMIYUH020 NIOOOPY ONMUMATILHUX napamempie 6a30680i cmanyii. 3anponorHosanull nioXio NOKPAUYe cepeoHio AKiCmb
ma cmabinbHiCMb 36 A3KY 13 HE3HAUHUM BRAUBOM HA MeEPeICy.

Knrouosi cnosa: GSM, I'nobanvra cucmema mobinbHo20 36'a3Ky, HA8UAHHA 3 NIOKPINIEHHAM, eIUOOKe HABYAHHS 3
NIOKPINAeHHAM, MAWUHHE HABYAHHS.

Abstract: The Global System for Mobile Communications (GSM) is formed by base stations that provide users
with channels for communication. Typically, the quality of communication channels is adjusted once per lifetime of the
base station, which causes suboptimal resource allocation and, as a result, inferior communication quality. In this paper,
we propose a reinforcement learning (RL) agent application to dynamically select optimal base station parameters. The
proposed approach improves the average quality and stability of communication with little impact on the network.

Keywords: GSM, Global System for Mobile Communications, RL, DRL, ML.

Beryn

He 3Baxkaroun Ha pO3BUTOK TEXHOJIOTIT MOOLTLHOTO 3B’ SI3KY, MEpEKi Ipyroro nmokominus (2G)
MPOJIOBXKYIOTh BiAIrpaBaTH BaXJIHMBY pOJIb y 3a0e3ledeHHl 0a30BUX KOMYHIKAIiiiHMX mOTpeO.
Oco0nmBo B yacu jaeimuTy eIeKTPOCHEpTii Taki Mepexki 0COOIUBO aKTyaldbHI 3aBISKH CBOIN
npocToTi i eHeproedexTuBHOCTI. OmHAK ONTHMI3alis PEeCypciB y TaKHX MEpekax € CKIaJHUM
3aBJIaHHAM 4Yepe3 OOMEXEHY KUIbKICTh YaCTOTHOT'O CIIEKTPa, MIHJIMBI YMOBHM HaBaHTAXKEHHS Ta
HasIBHICTb 1HTepdepeHIii.

[ToTouHi migxoau 10 PO3MOALTY pecypcamu 4acTo 0a3yroThes Ha (HIKCOBAHUX aJTOPUTMAX,
AK1 HE MOXKYTb aJaNTyBaTUCS 10 JTWHAMIYHHMX 3MiH cepefoBuila. HaTomicTh MeToAM HaBYaHHS 3
niakpiwieHHsaM (Reinforcement Learning, RL) 3aaHi momyky onTMMaibHHUX CTpaTeriii Ha OCHOBI
HAKOMHWYEHOTO JIOCBily Ta B AaBTOHOMHOMY peXHMI 3MIHIOBaTH MapaMeTpud Mepexi Ul
3a0e3meyeHHs Kpaloi sIKOCTI.

ine wiei cTaTTi B po3poOlil alroputMy, 110 374aT€H MOKPALIUTH SIKICTh 3B 53Ky 0a30BHX
CTaHII IuHaAMIYHO MoU(DiKyIoun iX mapameTpu. Jis nocsrHeHHd wi€i Ut OyAyTh BUKOPHCTaHI
pi3HI METOJHu, Taki SK METOAM NPOTHO3YBAaHHS, HABYaHHSA 3 MIAKPIIUIEHHAM Ta CHUMYJALIT
CEpEAOBUIIIA.

OOrpyHTyBaHHSI BUOOpY 1ii€i T€MHU MOJSATa€e B TOMY, IO MOTOYHI MIAXOAM O MiIOOPY
napaMeTpiB BUMAaramTh 3HAUYHUX JIOJACHKOTO pecypcy, 10 poOUTh AMHAMIYHY MapaMeTpU3alli€lo
MPaKTUYHO HEMOXKJIMBOK. TakoX TOKM CydacH1 OCHIDKEHHS 30CEpeDKEHI Ha ONTHMI3amii air-
ground Ta space-air-ground Mepex, MUTaHHS aBTOMaTH3allii HaJlAIITYBaHb HAa3eMHHUX 0a30BHX
CTaHLI{ JUIIAETHCSA HEAOCTATHHO BUBYUEHUM. BUKOPUCTaHHS METO/IIB MiKPIITIOBATHHOTO HAaBYaHHS

JO3BOJISIE€ 3SMCHIIUTH
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1.OcHOBHA YaCTHHA

1.1. KpuTuuHuii aHai3 JiTEepaTypHHX JKepes

3a TeMaTHKOIO CTaTTi OYyJI0 MPOBEJACHO IMOIIYK JIITEPATypHUX JHKEpes 3a OCTaHHI 5 POKIB y
cdepi KoMIT I0OTepHUX HayK Ta iH(QOPMAIIfHUX TEXHOJOTIH, sKi 0YyJI0 IpoaHaIi30BaHO HUXKYE.

VY [1] Oyna 3ampornonoBana RL mojens, 110 3MiHIOE BUCOTY Ta IOJIOKEHHS aBTOHOMHOT'O
JTar04voro 3aco0y /Ui HaJaHHS 0e3MpOBiTHOTO 3B'SI3Ky. 3MiHA [IUX MMapaMeTpiB BIUIMBAE HA SKICTh
3B'13Ky a0OHEHTIB Ta TOYHICTH JIOKaJi3allii. L{e He € mpsMoro onTUMI3AIli€I0 TapaMeTPiB MEPEKEBUX
napameTpiB uid CTaTHYHUX 0Aa30BHX CTaHIiN, a OUIbIIe HaBiramiiiHa MoOJeNb, IO HalIeHAa Ha
ONTUMI3AIliI0 MTO3UIIIOHYBAaHHS JIITAIOUNX 3aC001B KOMYHIKaIIii.

JocnipkeHHss [2] MpONOHye ONTUMI3ALl0 BUKOPUCTAHHSA 3arajbHOro KaHaly JJis
dbopmyBaHHS 3B'13Ky Mk OaratbMma 6a3oBumu ctaniismu (bC) 3a nomomororo DGN-arenTiB. Koxna
BC Tpenye BmacHuii Habip areHTiB, W0 BUOMPAIOTh ONTUMANBHI [ii JUII KOOPAWHOBAHOTO
OaraTtokopucTyBanbkoro  miuaHyBanpHuka (CMUS)  3rigHO  JOKaJIbHUX  OCOOJIMBOCTEH.
3amponoHOBaHa apXiTEKTypa 3HAYHO 3MEHIIYE HAJJIMIIKOBICTH iH(OpMAIi Ta 00YHCIIOBAIBHY
CKJIaJHICTh Npu KoMyHikauii Mixk BC 1 cTBOpeHHS yepru KOpUCTyBauiB, 110 3MEHILYE 3aTPUMKY
Ha YTBOPEHHS KaHATy CITUIKYBaHHS Mi a0OHEHTaMH, OJTHAK HiSK HE BIUIMBAE HA SKICTh 3B 53Ky MiXkK
HHUMH.

Ixepeno [3] mpencramisie cnpoekroBaHud RL areHT mims Mepexi MOBITpsS-3eMis i3
Monu(ikamiero AJig  HECTAal[lOHapHUX JaHUX. ABTOpPM BHUKOPHUCTOBYIOTH MOJU(DIKOBaHHIMA
MapkiBCbKHI TpoOIeC MPUUHATTS pillleHb 13 JAWHAMIYHOIO IMapaMeTPU3alli€lo, IO JO03BOJIHB
e(eKTUBHO BUBYHTH Ta BUKOPHUCTOBYBaB BHOIp IUIIO3IB Ta IJaHYBaHHA KaHAJIB KOPUCTYBauiB
(GSUS) crparerito y cumyrmsnii. JlocmiaHUKH TPONOHYIOTH PIICHHS, IO NPHUIIBUIIIYE BUOIp
KaHaJIiB Ta MJIJaHYBaHHS BUKOPUCTAHHS KaHAIIIB JUIs 0araTb0X KOPUCTYBAYiB, 1110 3MEHIIIY€E 3aTPUMKH,
Ta MOTCHLIHHO MAa€ MOKPAIIUTH SIKICTh 3B’A3KY, OJHAK TUIBKH JJISI MEPEX THITY MOBITPs-3eMIIL. Y
BUIIA/IKY Ha3eMHUX MEPEX TUHAMIYHUMH 3MIHHUMU MOXXYTb BUCTYHATH 3arajibHi XapaKTepUCTUKU
CE30HHOCTI CaMUX JaHUX.

AgTtopu [4] po3poOuiu areHTiB MNIMOOKOT0 MAITHHHOTO HAaBYAHHS PO3IOIICHHUX O CepBepax
Ta MIiJI'€HaHHI 10 KOHTpOJIepa MEPEeXi, 110 BUKOHYIOTh aITOPUTM OTPUMaHUH 13 3arajibHOT MOJIE,
Ta 30MpalOTh CTATUCTHKY B peXuUMi OMU3bKOMY J0 peanbHoro dacy. OtTpumani JaHi
BUKOPUCTOBYIOThCS JUTsl O(hIaifH HaBYaHHS 3arajbHOI MOJIENi, III0 BUBYAE 3arallbHUI ONTUMAaJIbHUH
QITOPUTM JUIS CTAHIIM A7 PO3UIMPEHOro HIMPOKO-KAaHAJIBHOTO MOOUIBHOTO 3B'SI3KY Ta YJIbTpa-
HaJIMHOro 3B'SI3KY 13 HM3BKMMHU 3aTpUMKaMH. Taka apXiTeKTypa BUMarae HasBHOCTI XMapHOIO
oOuMciIeHHs Uit 300py, OOpOOKM JaHMX Ta BUKOHAHHS TPEHYBaHHS 3arajbHOTO areHTa, a TaKoX
aJaliTUBHOTO MEPEKEBOr0 OO0JaJHaHHSA 13 1HTEJIEKTYyaJbHUM KOHTPOJEPOM Ta BIAKPUTUM
iHTep¢eiicoM B3aeMOIi, 1110 MOXke OYTH JOPOroBapTICHOK MOAM(DIKaIli€r0 A TPOBaKepiB.

VY [5, 6] cTBepIKYIOTh, IO KOMYHIKAIlIS JJII TPUCBOEHHS KaHATIB 3 MOTOYHUM MiAXOJ0M
BUKOPUCTOBYE OaraTto Ha/UIMLIKOBOI iH(popMalii B mporeci 1 MOXe BHKJIMKATH KOJi3ii, IO
HOTIPIIYIOTh AKICTh 3B'SI3KYy Ta Mepexi. L[ poOoTa KOHIIEHTpy€eThCsl Ha ONTUMI3alli CHeU(pIYHOro
Ty 6e3npoBigHoro 3B's3ky - WSN (wireless Sensor Network). Po6ora mokparrye Multi-Channel
Scheduling Protocol (MCSP) st nepconansuux , 6e3mnposigaux mepex (Wi-Fi). ®okycyerbes Ha
YCYHEHHI KOJI31i TpW TNPHCBOEHHI KaHAIIB 4Yepe3 OaraTOKaHAIbHUN IUIaHYBAJIbHUK. Takox
NPUCYTHIN Apyruil npoTokod, 1e eHepro-epextuBHuil RL arent mansa 6araroxkananbaux MAC s
MSNs nnaHyBalbHUKIB, 110 3MEHIIY€E KUIBKICTh KOJI3il 1 po30ajaHCOBYe 3alUIIKM €Heprii Ha
3aJIUIIKOB1 BY3JIM BUKOpHCTOBYIOuM ofHoro RL arenta. Tperss yacTMHa NpONOHYE €BPUCTUYHO
npumBuAIeHni RL mpoTokon, Ans MPUCBOEHHS KaHaJiB, IO 3MEHIIYE KiIbKICTh HaBYAJbHUX
iTepaliif eHepro-e(eKTHBHUM CIIOCOOOM BpaxOBYHOUH HIMPUHY KaHAIIB B INIaHYyBaJIbHUKY. YeTBepTa
yacTUHa pOOOTH TMPOIOHYE HOBOTO KOONEPAaTHUBHOTO MyJbTH-areHTa RL, BHUKOpHUCTOBYIHOUM
NPUIIBUANICHY MOJENb UIS TOMOJIAaHHS HAJUTUINKOBOI KOMYHIKaIlii KoomepaTHBHOTO areHTa RL,
BUKOPUCTOBYIOUM METOJAM CaMO-TUIaHYBaHHS 1 €HEpreTWYHOro IiaHyBaHHsS. [IpomonyeThest nBi
Bapiallii anropuTMy Ijs CTaTUYHOIO Ta JTUHAMIYHOIO BapiaHTy BUKOHAHHS. ABTOp 3asBIIS€ PO
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MOKpAIIeHHsI Pe3yJbTaTiB MPOIMOHOBAHUMH TIAXOJaMH Yy PI3HUX BHUMNAAKaX TMPH JEKIIHKOX
excrepuMenTax. OJHaK BCl MIAXOAM MOKPALIYIOTh JIMIIE /U BCTAHOBJICHHA 3B’A3KY, ajie HisK HE
MOKpaIIye caMm 3B’s30K. J[o TOro ’k, po3paxoBaHa Ha 3HAYHO BHUIIl YaCTOTH, IO 3a CTAHAAPTOM
BUKOPUCTOBYETHCS MEPEBAKHO ISl IHTEPHET KOMYHIKaIlii.

1.2. IlocraHoBka mpo0JeMHu Ta ii OOIPYHTYBaHHS

3riHO MPOBEICHOTO aHATI3y HAYKOBUX JHKEpEN OYI0 BUSBIICHO Psifl MPOOIIEeM:

1. besnocepenHio SKiCTh TOJIOCOBOTO 3B’SI3KY MEpEeX HE MPHIIJICHA JOCTaTHS yBara y
poborax.
2. Heo0xigna ontumizarii HazeMHuX GSM Mepex.

Binbmicte pobiT MPUCBIYCHUX ONTUMI3AI] PecypCiB HE PO3TIILAAI0OTh K OHY 3 MOKIHBHX
IiJIeH, 11 SAKICTh 3B’sI3Ky MK aOoHeHTamu. Came TOMy, IIbOMY IMUTaHHIO Oyne MpHUIICHa yBara y
IbOMY JIOCITIJIDKEHHI.

1.3. ®opmy/JaHBaHHA METH i 3a7a4 JOCTiIKEHHS

Ha ocHOBI MpoOBEICHOTO KPUTHYHOTO aHAIII3y HAYKOBUX JDKEpe OyJI0 BHUSBIICHO, IO iCHYE
HeoOXimHicTh y onTumizanii mapamerpiB GSM Mepex, Ta 30KpeMa SIKOCTI 3B’S3Ky uepe3
OTITHMI3AIliI0 PECYPCIB.

MeTta po6oTu moinsArae B MOKpALIEHHI SKOCTI 3B 53Ky OUHAMIYHMM BHOOpPOM IapameTpiB
Mepexi.

JlJ1st TOCATHEHHSI METH HEOOX1HO BUPIIIATH Psifl 33714, a caMe:

1. TloGynoBa Mojeni MpOrHO3yBaHHs CTaHy MEPEXI BiJl 3MiHU apaMeTpiB 0a30BOi CTaHIII.
2. TloOynoBa cepemoBUIIA ISl TPSHYBAHHS areHTa
3. OuiHKa sKOCTI 3B’53KY 13 IUHAMIYHUM M1A00pOM MapaMeTpiB.

O0’€eKT 10CTiIZKeHHS — 3MiHA SKICTb 3B’ SI3KY PU AMHAMIYHOMY MiA00p1 MapaMeTpiB Mepexi
IIpeamer pocaigxenns — meronn MH ontumizanii nmapamerpiB GSM  mepexi i3
3aCTOCYBAaHHSM.

1.4. Po3poOka oToueHHA Ta apXiTEKTypH

JlaHi sIKi OMUCYIOTH CTaH 0a30BOi CTaHIlT HA OAWH J€Hb MICTSITh HACTYIHI KojoHku: 'Half-
Rate Usage Rate', 'Channel Blocking Rate', 'Number of Available Channels’, 'Channel Traffic',
'Param_1', 'Param_2". 'Half-Rate Usage Rate' ta '‘Channel Blocking Rate' e BukopucTanHs oJioBUHH
Jiana3zoHy KaHaly JAJs 3B 3Ky Ta BIICOTOK 3a0JIOKOBaHMX KaHAJIB yepe3 3aiHATICTh BiAMOBIIHO. L1
3HayeHHs OynyTh 3MIHIOBAaTHCS B 3aJIe)KHOCTI BIJ] BHUCTABJICHHUX IMapaMETPIB MEPEXi, TOMY
noTpeOyIOTh MOJIeNI MPOrHo3yBaHH. KibKICTh BUIBHUX KaHAJIIB Ta 3HaU€HHS TpadikKy 1€ iCTOPUYHI
TaHl Ta 3aJUIIAI0THCI HE 3MIHHUMU.

Ha sxicTh rojocoBoro 3B’s3Ky BIUIMBaIOTH 2 mapamerpa Oa3oBoi cranuii ('Param 1/,
'Param_2'), siki BU3HAYaIOTh MOPOTOBI 3HAYEHHS 3a SIKUX BMHUKAETHCS, YN BUMHKAETHCS PEKUM
MOJIOBUHHOTO KaHay 3B’sI3Ky. SIK 3p03yMmisio 3 Ha3BM, Ha OJHOr0 aOOHEHTAa MPHUIIAAAE MOJOBHHA
KaHaly 3B 3Ky, a OTe TipIIOI0 SIKOCTI 3BYK. J{pyruii mapameTp BiJlOBIIa€ 3a MOPITr HABAHTaKEHHS,
IpU SIKOMY ITOBEPTAETHCS BUKOPUCTAHHS TOBHOTO CIIEKTPY KaHAJIy Ha OJHOTO a0OHEHTA.

Takum yMHOM MM OauMMoO, IO MpPU 3MiHI MApaMeTpiB Mepexi, CTaH IHel K Mepexi
3MIHIOETBCS, a OTKE€ HEOOXiTHO HEOOXiTHO II€ BpPaxOBYBaTH. 3BakKarouW Ha Iie, Oyno oOpaHO
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HaBUaHHS 13 MIAKPITJICHHSAM, IO Ja€ MOXJIMBICTh ITEPATUBHO OHOBIIOBATH CEPEIOBHINE BiJ
B3a€MOii 3 HUM areHTa.

Jiis mepenOadeHHst MaliOYTHIX CTaHIB CepeIOBHINA HEOOXiJHA MOJIEIb, SIKa 3/JaTHA JOCTATHHO
TOYHO TMPOTHO3YBaTH 3HAYCHHS HA JOBIMM ropu3oHTanbHUE mepion. N-Hits npencrasiena y [7]
JI03BOJIsIE HA OCHOBI KOBapiaTiB MPOTHO3YBATH 3MiHHI TapaMeTpu Mepexi. TakuM 4uHOM 1151 Mepeka
BIJINOBI/Ia€ 3a OHOBJICHHS CEPEIOBUINA areHTa KOXXEH pa3, SK Horo i BIAPI3HAIOTHCSA BIJ
ICTOpUYHHX.

OCKiTbKM areHT Mae€ CIpaBy 13 CEpelOBHILEM y 6 3MIHHHMX Ta Ma€ JIMIIE JBa Mapamerpa
B3a€EMO/IIT, a TAKOK HETIEPEPBHUMN MPOCTIP M1 (OCKUIBKU 3HaUYCHHS 000X MmapameTpiB y Mexax Bij 0
10 1.0), To Oyio 0O6paHo apXiTEKTypy M’ SKOTO KPUTHK MpeacTaBieHa y [8].

1.5. PesyabTraTn

Mopuenp nporuosyBanns crany N-Hits Oyna narpenoBana i3 RMSE noxu6koro 0,052. Ha
OCHOBI I1i€1 MOJIeNTi B3Ke OYJI0 3aITyIIeHO TPEHYBAHHS arcHTa.
AreHT OyB OTpUMaHUU HUIAXOM TpeHyBaHHS NpoTsarom 100 enox mo 4 tucsyi itepamiid. Ilicns
[LOTO HOTO OYII0 3aCTOCOBAHO JI0 TECTYBAIBHUX JaHUX, 3 iHIUX bC. B pe3ynbraTi Oyiio oTpuMano
TPOXHU BUIIII 3HAYCHHsI OJIOKYBaHHs a0OHEHTA B MEKaxX IMOXUOKH, SIK 300pakeHO Ha ricTorpami Ha

Pucynok 1.

TCH Blocking Rate, BH Blocking Before
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Pucynok 1. I'icrorpama kijgbkocTi 6J0KyBaHHS ITPU 3aCTOCYBAaHHI areHTa (311Ba) Ta nepes HUM
(cmipaga).

Sk 300pakeHo Ha PHCYHOK 2 , SIKICTh CYTTEBO TIOKPAITIIIACS, SIK BUIAHO 13 PO3IIOILTY 3HAYCHb
BUKOPUCTAHHS IIOJIOBUHHOTO KaHally. 3HA4YeHHs 3MICTHJIM CBill po3moniit, Je Moja mpu
HaynamrtyBaHHa areHTa Mix 60% Ta 80% kananiB y mopiBHsHHI i3 90% Tta 100%. Takox pyuHi
HaJIAITYBaHHs MPU3BOAWIHN 10 BUKopucTanHs Beix (100% HR) kananiB HR-pexumi y maiixe 18000
aOOHEHTIB, TO/Ii K aBTOMAaTUYHI HanamTyBaHHs MeHIIe Hix 1000 aboHeHTiB.
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Pucynok 2. Tlicrorpama KiIbKOCTI BUKOPUCTaHHS IOJIOBUHHOTO KaHAly 3B’SI3Ky IHpHU

0

mapaMeTrpax areHra (3;1iBa) Ta J0 I[boro (Crpasa).

3riIHO0 OTPUMAHUX PE3YJIbTATIB MOKHA CTBEPIPKYBATH, L0 SKICTh 3B 53Ky i1 aOOHEHTIB
3pocia, OCKUIBKM YacToTa Ta BiJCOTOK BHUKOPUCTaHHA ISl 3’€HAHHS TIIOJIOBH Jiara3oHy
3MmeHmuiIacs. OJHaK € He3HaUHEe 3pOCTaHHs y KUTBKOCTI OJIOKYBaHHS 3’ € THAHb.

3aramoM, aBTOMaTHYHUI Minbip mapameTpiB Ha ocHOBI RL-areHTta 103BOJNMTH 3MEHIIUTH
HAaBaHTa)XCHHS Ha MOJbOBHMX 1HXKEHEPIB OMepaTopiB MOOILIBLHOTO 3B’SI3KY, 30UIBLIIMTH CTAOUIBHICTh

Ta HE3aJIeKHICTh 0A30BUX CTAaHIIIM Ta MOKPALIUTH SKICTh 3B’ 513Ky MK a0OHEHTaMHU.
2. BHCHOBKH

3anponoHOBaHUI MiAX1] A0 oNTUMI3aLli pecypciB 6a3oBux cranuii GSM mepexi 103BOJIUB
3MEHIIUTH BUKOPHUCTAHHS TIOJIOBUHHOTO Jliana3ony kaHary Ha 19.27%, i3 3011bIeHHsIM OJTIOKYBaHHS
Ha 0,9%. ABTOMaTHYHE HalAIITYBaHHS MapaMeTpiB Mepexi 3a gornomoror RL arenTa no3sonuio
CYTTEBO MOKPAIIUTHU SKICTh 3B’SI3KY /1JIs1 aDOHEHTIB HE3HAUHUM 301JIbIIIEHHAM OJIOKYBaHHS.

JIjig nmoianbIInX TOCTIPKEHb IUIAHYETHCSI 3SMEHILUTHU KIJIbKICTh OJIOKYBaHHS HE 3MEHIIYIOUH,
YW HaBITh MOKPALIYIOUYHU SIKICTh 3B’SI3KY, @ TaKOX PO3POOUTH OUIBLI TOYHY MOJENb NepeadadyeHb
HACTYITHUX CTaHIB CEPEIOBUINA, AJIs OLIbII HAA1MHOTO areHTa.
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Y JIK 330.46:330.15

PamazanoB C. K. (Cxionoykpaincokuii HayionanbHuii yHieepcumem imeni Bonooumupa /lans,
m.Kuis, Yxpaina)

KOT'HITUBHI TEXHOJIOT'TI MPUVMHATTS IHTEJEKTYAJIbHUX PIIIEHD Y
HEUPOEKOMOMIKI Y CKJIAJHOMY IHOOPMANIMHOMY CEPEJOBMUIII

Anomauin. B ymosax yigpposusayii cyuacHoi eKoHOMIKU mMa wWupoKo2o UKOPUCMAHHA CUCTeEM | MeXHON02ill
WMYy4Ho20 iHmeneKmy 30amHiCmb He NPocmo 00 MEOPH020 MUCIEHHA, a 30AMHICMb 00 HeQOPMANbHUX GUUHKIS,
HeopOuHapHux piuienb ma Oill, H0B086E0EeHb — OCb 20]106HA 8UMo2a 00 gaxisyie. I mym nepuie micye sucmynams
meopemuuni 3HAHHA, CHPUAIOMb PO3GUMKY pO3YM0o6o2o anapamy. Haeuumu pozmipkogysamu camocmitino 3
VPAXY8aAHHAM AHANI3Y PI3HUX HAGUAHL, MEOPIll [ No2NA0i8 YUeHUX-meopemuKié CMmae Haunepuum 3a60aHHIM wWooo i
BUKIAOAHHS eKOHOMIUHOT HayKu. T106e0inK08a eKOHOMIKA — 8BIOHOCHO HOBA HAYKA MA HABYATbHA OUCYuniina. Bona mac
weuouLe MidCOUCYUNIIHApHUL Xapakxmep i 3HaX00UmsCsl HA CIMUKY 080X HAYK. NCUXOI02I] Ma eKOHOMIKU, W0 0036015€
BUABUMU NCUXOJIO2IYHY OCHOBY MEMOOON02i] NPULIHAMMA PileHb TI0OUHOI0 MA THMUMU azeHmamu. 3apas He MOJCHA He
bpamu 00 ysazu no8ediHK08Y eKOHOMIKY, OCKLIbKU NOBEOIHKO8ULL NIOXIO. npumamanHuil OiIbHOCMI PI3HUX CY0'ekmig:
8i0 [HOusioa ma @ipmu 00 PUHKI@ ma pe2ioHi8, CUCMEMAMUYHO NOSMOPIEMbCA MA YCKIAOHAIOMbCA, 00360715€
BUABUMU  2NUOUHHI MOMUBU OIAILHOCMI A2eHmis, AKI 3A8X4COU HACMYNHUX KAHOHAM MPAOUYIlHOT eKOHOMIKU.
Iosedinko8y eKoHOMIKY OOHedasHa bazamo Xmo 68axicd8 HAYKOW OpYeOpAOHOI0, Heo008's13k060l0 — makoi coobi
HENnOGHONIMHBLOI0 POOUUKOIO 00pOCoi mpaduyitinoi exonomixu. OOHAK NPUXUTbHUKU OCMAHHLOI 6Ce JC MaKu
BU3HABANY, WO THOUBIOU HaC 6I0 YaACY NOBOOAMbCA HEPO3YMHO, HEPAYIOHALHO, ale HA ye 3a8lcou OYu meopemuyni
odokasu.

Knrouogi cnosa: nosedinkosa ekoHOMIKaA, HEUPOEKOHOMIKA, HEeUpOMapKemune, iHmezpanbHa Mooeib OUHAMIKU
nogedinku, nogedinkose mooeniosanns CY ma I1P, mooenv npoyecy aubopy ma npuiHamms pitueHv, MidcOUCYuniinapue
00CNiOJCEH S | CUHmMe3, eKOHOMIKA THHOBAYIL.

Abstract. In the context of the digitalization of the modern economy and the extensive use of artificial intelligence
systems and technologies, the primary requirement for specialists is not merely creative thinking but the ability to engage
in unconventional actions, make extraordinary decisions, and introduce innovations. Theoretical knowledge, which
fosters the development of intellectual capacity, takes center stage. Teaching individuals to think independently while
analyzing various doctrines, theories, and perspectives of academic scholars becomes a key objective in teaching
economic science. Behavioral economics is a relatively new science and academic discipline with an interdisciplinary
nature, existing at the intersection of psychology and economics. This allows for uncovering the psychological foundation
of decision-making methodologies employed by individuals and other agents. Today, behavioral economics cannot be
ignored, as its approach: is intrinsic to the activities of various entities, from individuals and firms to markets and regions;
systematically recurs and becomes more complex; and reveals the underlying motives of agents' actions, which often
deviate from the traditional economic norms. Behavioral economics was, until recently, considered by many as a
secondary, non-essential science—a mere adolescent relative of mature traditional economics. However, even proponents
of traditional economics have acknowledged that individuals occasionally act irrationally or unreasonably, and such
behavior has always had theoretical explanations.

Keywords: behavioral economics, neuroeconomics, neuromarketing, integral behavior dynamics model,
behavioral modeling of SU and PR, choice and decision-making process model, interdisciplinary research and synthesis,
innovation economy.

Bcmyn. Ha cboroHinmHii AeHb €KOHOMIUYHMM PO3BUTOK 3a3Ha€ MEBHUX TpaHchopMarliid,
JDKepesia SKHX BIJCTEXKYIOThCS Y MOBEAIHKOBUX PEAKIIISIX Ta OUIKYBaHHAX JIFOJCbKOro Mo3Ky. Came
Ha OCHOBI HOBOTO 3HaHHS PO T€, SIK MPAIFOE MO30K, TOYMHAIOTH 3MIHIOBATHCS YSBICHHS PO TE, SIK

J0MHA npuiimMae pimeHHs. L{i BUCHOBKM HEMUHYYE 3MIHIOIOTH YSIBJICHHS PO 3aKOHOMIPHOCTI Ta
NPUHIUIH (YHKIIOHYBaHHS €KOHOMIKH. Bce 11e 3BoauThest 10 popMyBaHHS HOBUX 3B'SI3KIB Ha CTUKY
COLIAIbHOTO CHPUHHATTS Ta HOT0 €KOHOMIYHOTO Pe3yJIbTaTy, CTBOPIOIOYH Traly3b HEHPOSCKOHOMIKH.

BuxopucTaHHs KITaCHYHIX €KOHOMIYHUX METO/IIB B IHIIUX HAayKaX Ha ChOTOJHIIIHIN IeHb
BUKJIMKAJIO 3BOPOTHUHN e(PEeKT — eKOHOMIKA BKe puiiMae 0e31114 MeTO/I1B 1 KOHIIETLIH, po3po0JIeHnX

MICUXOJIOTIEI0, COIIOJIOTIEI0 1 HaBITh OOTAaHIKOIO 3 MeXaHikol. OJHUM 13 TaKUX HaIpSIMKIB 1 €
HEMPOEKOHOMIKA — ray3b HayKH, sika 3aiiMaeThCsl BUBYCHHAM HEHPOO10IOTIYHHX 3acal HPUHHATTS

piLLICHb.
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HeiipoexoHnomika siBJsie COO00 MIKIMCUUIUTIHAPHAN HAMIPSIMOK, KU € 3JIUTTSAM €KOHOMIKH,
NICUXOJIOTIT Ta HEHpOHAyKHM y BUBYCHHI NPOLECY NPUHHATTA pilieHs groauHoro. Ll obmacth
JIOCJTIJDKYE OCHOBH €KOHOMIYHOI MTOBEIHKH IUISIXOM 3a0X0UYEHHS CIIBPOOITHHUIITBA Ta JUCKYCIH MK
HayKOBISIMHM Y TaTy3l IMCHXOJIOTIYHUX, EKOHOMIYHUX, HEBPOJIOTTYHUX Ta iH(POpMaliiHUX HayK, B
TOMY HayK IITYYHOTO 1HTEJIEKTY.

HetlipoekoHOMiKa TaKoX 1 HEHPOMAPKETUHT BUBYAE TPOLIEC MPUHHATTS PillIEeHb IPH BUOOPI
QIbTEPHATUBHUX BAapiaHTIB PillleHb, PO3MOALII pU3UKY Ta BUHaropou. HoBaropchkum € Te, o came
HEHPOEKOHOMIKa BUKOPHUCTOBYE €KOHOMIYHI MOJEINI JUIsi BUBYCHHS PEAKIliil JIOJCHKOTO MO3KY, a
TaKOXX JIOCSITHEHHsS HeipoOionorii st moOyJOoBH E€KOHOMIYHMX 3aKOHOMIpPHOCTEH 1 MoJenei.
HeiipoexoHoMika € 1HTEpAUCIUILUTIHAPHUM TIOJIEM AOCTIIKEHbB, SIKE MOEJHYE TTOHATTS 3 EKOHOMIKH,
nicuxosnorii Ta Heipobionorii. Ii Mera monsrae y BMBUEHHi MO3KOBHX MEXaHi3MiB, fKi JI&XKaTh B
OCHOBI TPHUUHATTS pillIeHb, OCOOIMBO B MpOOJEMax MAPKETHHTY 1 CKJIaJHUX EKOHOMIUYHHUX
cuTyamisix. BUKOpHCTaHHS 1HCTPYMEHTIB HEHPOCKOHOMIKM y TPUHHSATTI €KOHOMIYHUX PpillleHb
BIJIKpPHBAE HOBI MOXKJIMBOCTI ISl TJIMOIIOTO PO3YMIHHSI €MOIIIMHUX Ta KOTHITUBHHUX (DAKTOPIB, 1110
BIUTMBAIOTh HA TTOBEIHKY IHBECTOPIB, TPEHUEPIB Ta IHIITUX areHTIB pUHKY. MeTO 11 HEUPOIMIDKUHTY
Ta €KCIIEPUMEHTAJIbHI ITPU JT03BOJIAIOTH JIOCIIIIHUKAM BUBYATH aKTHUBAIllI0 IEBHUX 00JIacTell MO3KY
y BIITOBIJb HA Pi3HI CTUMYJIM Ta CUTyalii. AHaJIi3 MO3KOBUX PEakliii Ha Pi3HI aKTHBH Ta PUHKOBI
YMOBH JI03BOJISIE PO3POOUTH MOJIENI, 10 BPAXOBYIOTh 1HIAMBIAYyaldbHI MepeBaru ta pu3uK-npodian
MapKeTOJIOTiB Ta iHBecTOPiB. EMOIIIT BiAIrpatoTh BaXKJIMBY POJIb y MPUUHSTTA pillieHb. JlocmiKeHHs
MOKa3yloTh, IO E€MOLINHHI peakuii MOXYTh MPOBOJWTU OI[HKY PH3UKY, NMPHUHATTS DILICHb IPO
KYITBIIIO UM TPOJIAXKY aKTHBIB, 1 HABITH (POPMyBaHHS LIHOBHUX yABJICHb. PO3YMIHHS X €MOIIMHNX
(dakTopiB 103BOJISIE PO3POOUTH CTpATETii, AKi BpaXxOBYIOTh EMOIIiHI peakilii pHHKOBHX areHTiB.

Po3po0ka iHTerpoBaHuX i€papXiyHUX IHTENEKTYaTbHUX MOJENEH Ui CUCTEM YIPaBIIHHA 1
NPUAHSTTS PIICHh HA OCHOBI BHKOPUCTAHHS MAaTEMaTUYHUX METOJIB, MOJEICH Ta iHHOBAIlIMHUX
TEXHOJIOTI Ta CHCTEM B CYYaCHHMX YMOBaxX HECTaOUIBHOCTI Ta KPHU30BHX SIBUII € AKTYaJbHOIO
npo6aemoro. CHHTE3 IHTErpOBAaHUX MOJIENe! 3 ypaxyBaHHSAM I'yMaHITaApHUX 1 KOTHITUBHUX 3MIHHHUX
JUISL OLIIHKM CTaJIoro 1 6€3MeYHOro po3BUTKY TAKOXK € BaXJIMBUM 1 aKTyaJIbHUM.

B naHoi craTTi Bhepiie pO3INISIHYTO y3arajbHeHa 3-X pIBHEBAa CTPYKTypa i€papXidHOi
IHTErpaibHOI IHTENEKTYaIbHOI CUCTEMU YNPABIIHHSA 1 NMPUHHATTS pIllIEHb y CKJIAJHUX CHCTEMax.
[Tpu 11bOMy BpaxoOBY€eThCS: BIUIMB 30BHIIIHBOTO cepesloBHIa Ha 00'ekTa ynpasiinHsa (OY) 3 aBoma
BUXOJIaMU («KOPUCHUMY» 1 «IKiATUBUMY»), OV sK 30BHIIIHE CEPETOBHINE IS OCOOU MPUUHATTS
pimens (OIIP), 3ampomoHOBaHO iHTENEKTyajdbHA CYMNEpPBI3OpHA CHCTEMa, cHCTeMa OOpoOKwH,
MOJIEIIOBAaHHS, YIIPABIIHHS Ta IPUUHSTTA PIlI€Hb, 3 YpaXyBaHHSAM MOKJIMBOCTI MOJIEIIOBAHHS BCIX
pIBHIB CHCTEMH, MOJENI CKJIQJHOTO KaHaly BHUMIPIOBaHb Ta CIOCTEPEXKEHb Yy BUIIIAMIL
MYJIbTUILTIKATUBHO — aJUTHBHOI CyMIIll BHIIaJKOBHX MpOIECiB Ta (HakTopiB, 3 ypaxyBaHHIM
BEeKTOpa 3 HAOOpy: MOJeNi CKIaJHOTO KaHally BHMIPIOBaHb Ta CIIOCTEPEXKEHb Yy BHIIISAII
MYJBTUIUTIKATUBHO — aJUTUBHOI CYMIIl BMIIAJKOBHUX MpPOLECIB Ta (PaKTOpiB, 3 ypaxyBaHHSIM
BEKTOpA 3 HAOOPY: KOSHIMUBHI, eMOYilini, pedhiekcueni, Oyxo6Hi ma emuyri 3MiHHI («IapamMeTpu
MOPSIKY»), a TAKOXK MOJEI JUHAMIKY TPECTaBJICHI 1 B PO3MOIIIEHUX KOOPIUHATAX.

V3aranpHeHa CTPYKTypa 1€papXivyHOl IHTEIEKTyaIbHOI IHTETPAIbHOI CUCTEMHU YIIPABITIHHS Ta
NPUMHATTSA pillIeHb y CKIAQAHUX cUcTeMax (puc. 1).

Iosnavennus na puc. 1: B/C — BumiproBanns/Crnocrepexenns; G(t) — uiap (UiboBa
ycranoBka) Cymepsizopa; U(t) - mpwuiiHsaTe pimeHHs; u(t) — Bekrop ynpasimiHHs; W(t) — BekTop
30BHIIIHIX 30ypeHb; R(t) - pecypcu CV ta I1P; z(t) - BexTop "mikiamuBoro" Buxomy; &(t) — BeKTop
MEePEeLIKo/BUNIaIKOBUX 30BHIIIHIX 00ypeHb BuMiproBanHs/CrocTepeKeHHSI BEKTOP «KOPHUCHOTO»
BUXOAY; y(t) — BEKTOp «KOPHCHOT0» BHUXOAy; Y(t) — BEKTOp BUMIpPIOBAHHS Ta CHOCTEPEKEHHS
BeKTOpa cTany cuctemu npuidHsaTts pimensb (CITP); X(t) = [K(t), e(t), r(t), d(t), (t)] — BexTOp cTany
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cuctemu auHamikd moBeninku (iHTenmekryanbHoi CIIP), mpuuomy k(t), e(t), r(t), o(t), e(t) —
KOTHITUBHI, eMOLIHI, pe(IeKCUBHI, TyXOBHI Ta €TUYHI 3MiHHI («TapaMeTpH MopsAaKy»). [Ipudomy,
BekTop X(t, q) = {Xi(t, q), i=1,...,n} — we mpocropoBi 3MiHHI cTanu iHTenekTyanpHoi CIIP ado
Cy0'exra ynpasiiaas; x(t) — BekTop crany OV.

Pisyl

L]

JQsHIUKE cepedogiiue.

| wi(t) |
Pecypcu OV

06’exx ynpagaiaaa (OV).
| = x(?)

[3OBHIITHE CEPEJOBHINE T/IA OITP]

L)

EZI E‘Z’ Pedmexcia Iza(g s ?(g

o, | CyoexrynpapninmsTa IIP
s (CY ma IIP).
X, q)
i EXl IHTEP®ELC | '|| 19703) v
IHTEIeKTYaIbHA CHCTEMA, CHCTeMa 00POOKH,
MOAENBAHHA, YIPAB/JIHHSA Ta NPHAHATTA PilICHD
T1s® |
BUMIPIOBAHHA I / Mema, cepedoguuie, \ ~  CITOCTEPEXEHHA
i ) ¥MOGUMA OOMENCEHHA. e
CVIIEPBI3OP

Pucynok 1. V3aranbHeHa CTpyKTypa 1€papXiqHOi IHTENEeKTyalbHOI IHTerpaibHOT
CUCTEMHM YIPABIIIHHS Ta MPUNHHATTS pILICHb

1. Micue Koznimonocii 6 mexnonoziax ma cucmemax wimy4Hozo iHmeaeKkmy
01 NPUIHAMMA YRPAGIAIHCOKUX PilieHb.
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Pucynok 2. V3aransHena cxema: KorHiTosoris Ta ITy4YHUN 1HTEIEKT.

s y3araneHena cxema € koprex: <@, I1, C, JI, A, HO, II, b, M, K, C>, ne: ® - ®inocodis,
IT - Tlcuxomorist, C - Comionoris, JI - JlinrBictuka, A - AHTpomnosoris, A-® — AHTPONOJIOTO-
¢inocoperka mincucrema (kommnonenra), H® — Heiipodizionorig, I — Ityynuil iHTENnexT
(artificial intelligence, Al'), b — Biomoris ta Biomoriuni mocmimkenns, M-K-C — Maremaruka-
KibGepueruka-CunepreTika, OCHOBHI IHCTPYMEHTH HAyKOBOTI'O Mi3HAHHS Ta PO3BUTKY.

YWhat is Artificial Intelligence? Apxuenas xonus om 18 noabpsa 2015 na Wayback Machine FAQ
om [[xcona Maxxapmu, 2007

2. Mooenbv cmoxacmuunoi ounamiku OY y npocmopi cmanis

[ToMiTUMO TaKkoOX, IO JUHAMIYHA CHCTEMa Ma€ CHHEPTeTUYHUN (a00 KiOepHETHYHUI) OTHC,
K10 epeKTHBHO MOOyaoBaHui onepaTop D, € Takuii, 0 CTaH CUCTEMHU B KOKEH MOMEHT Jacy ||
€ (o, (Jo))Moxke 6yTu mobymoBanuii 1o 3Hauennsx sexropy (1), [ € (1, (o) 3a yMOBH, 1110
yci 30BHIIIHI A1, 0 YIPaBIAOTh, (pikcoani [10, 11]:
(D) = (), U, 0, 0), 0 € (Lo, (o)), 0 e (H1, Do), (1)

ne (01, [J)- BumagkoBa Jis 3 BiJOMHMH iMOBIpHiCHUMH XapaKTepI/ICTI/IKaMI/IT](t,r)E Gn Iist, 3aJaHa
MipoI0 HeBU3HAuYeHocTi (11, (1 € (1" - [ii, o ynpaBisioTh, I' - IPOCTOPOBA 3MiHHA.
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3acanvnutt éuensio moodeni ounamixu OV: dx(@@)/dt=F(x(t), u(t), w(t), a(t), t). (¥ pasi
TEXHOTEHHOTro mpomuciaoBoro OV, ToOTO piBHSHHS AWHAMIKM HpU OOJIKY TAaKOX EKOJOTTYHUX
3MiHHUX/(paKTOpIB, IKB. y poboTax aBropa [1-6]).

[Tix q)asoBI/IM CTaHOM CHCTeMH OyIeMO po3yMmiTd BEKTOp L) = (U, Uz, . .vy U0), me Oo,
=1,. - cyKynchL JIaHUX, XapaKTepH3yIOunX I-il CeKTOp CHCTEMH. HpHHyCTHMo 110 BCI
ceKTopH OCHameHl JEIKAMU BAXKEIAMU yr[paBJ'IlHHH 0=(0g, Oz,...,00)

KoxxeH 3 mepepaxoBaHUX MapameTpiB, B CBOIO 4epry, SIBISE c06010 BEKTOD, CKIIAJICHUH 3
YHCJIOBUX 3HAYCHb IOKA3HHKIB DPI3HUX XapaKTePUCTHK UHaMiKK cucremu. Hexaii [to, tk]
PO3TIISAHYTHI Tepiofl PO3BHUTKY CHCTEMH. Ilo3HaunMo 4epe3 & BEKTOp JESKMX JOJaTKOBHMX

napaMeTpiB, SKi BU3HAYAIOTHCS NUIIXOM IPOTHO3YBAHHS 13 3aCTOCYBAaHHSIM CTATHCTUYHHUX JAHUX
CHCTEMH, A00 BOHH - KOHCTaHTH.

TakuM YMHOM, TOCHIJKYETHCS 3aJIekKHICTh KOXKHOI 3MmiHHO1 [, [1 = 1, . . ., [ Big
YOPABJISIIOYUX 3MIHHHMX [ ] CTaHIB CHCTEMH 1 BEKTOpa rapameTpiB [,

30kpema, JliHeapi3oBaHa MOJIENIb CUCTEMHU Ma€ BUTJIS:

DDD()j’ = 0(0)0(, ) + () (0, 1) + D(0)0(0),

U

ne (0, D) e O O, 0y e OF () e o5, () e O (m) e o,

0(@)e OO,
() = [Hoo(D)], 2() = [Don()] - marpumi 3 mapaMeTpuyHOK HeBH3HaveHicTio; [([,
) =[0o(C, 0)]- Bekrop crany cucremu; L[(C, ) = [0 (], 0)] - Bexkrop ymnpasmiHHS;
C(J) — BEKTOp €K30r€HUX BO3MYILEHUI, || - BEKTOP CTOXaCTUYHHX IIPOLIECIB.

3ajaua CHHTE3y ONTHMAJIbHOIO YIPABIIHHSA CTOXaCTHYHOK JUHAMIYHOK CHCTEMOIO

CTaBUTHCS TAKUM YHMHOM: 3HAWTH 3aKOH ONTHMAIBHOTO YIPaBIiHHs y BUIIsI [7-9]:

o0, ) = N[, D) @

a0o A1 TIHIAHOTO BUIAJKY:

(0, 0)y=-00(0, 0), )
a IUTbOBUH (PYHKIIIOHAM /Ul ONTUMI3ALil (MIHIMI3aIll) 3a1a€ThCS Yy BUIJISIIL

=] {JJF(D”(D, )oo(o, 0)+ 050, )oo(o, D)ooy o(o)oo, (3)
0

ne N - HemiHIHI onepartop.
ToOTo micis ycepeAHIOBaHHS MAaEMO KPUTEP1i ONITUMAIBHOTO YIIPaBIIIHHS 5K

) = D[Jﬂ‘ (D;(D, YOO, D)+ 050, )OO, )OO0, (3%)

VY mpocToMy BHIAJKy MO>XKHAa BUKOPUCTATH JIiHII{HE PIBHSAHHS CIOCTEPEKEHHS y BHUIVISIL:
(D) = 0(D) (D) + 0(0).

VY 1pomy piBHsHHI criocTepeskeHHs [([1) € croxacTHYHA MAaTPHUIL CIOCTEpeKeHHS [7], Ky
MOKHa 3a/1aBaTh 3 MPAaKTUYHUX MIpKyBaHb, a [I([]) € mporec Ty «OUMMH LIym», SKHH MOXeE
3aJaBaTHUCA 32 JaHUMHU CTaTUCTUKH. [Ipu IbOMY 3a IPUHIUIIOM pO3JiJeHHs, TpeOa BUPIIIUTH JBa
camocTiiHi 3aBnaHHs [8-10].

VY paHHIX poOOTax aBTOpa PO3AUTY 3aBJaHHS ONTUMAJIBHOTO OIIHIOBAaHHS ((iapTparii) 1
iIeHTudikanii B~ MYJbTUIUTIKATUBHO-aJUTHUBHUX  CyMiIIaX BHpILIEHAa BUKOPHCTOBYIOUH
iHTerpansHuii onuc ¢pinbTpy [7]. [IpoTte, 3aBnanHs QinbTpallii MOKHA i 3pyYHO BUPINIYBATH TAKOK,
BUKOopHucToBytoun ¢inbTp Kanmana mig miniiHoro Bumaaky 1 ¢inetpy CrparoHoBHuaA IS
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HEJIIHIAHOI MpaBoi YacTHHU pPiBHAHHS auHaMiku [7-10]. OmiHKK cTaHy 3HAXOIATHCS SIK YMOBHI
cepesiHi 3 MoOyI0BOIO 1 pIlIEHHSAM HENMiHIMHUX AuCHepCiiiHuX piBHAHB THIy PikaTTi. @inbTp nae
PIIICHHSI CTOXAaCTUYHOTO AM(EpeHIliaIbHOTO PiBHSAHHA. BiH MOXke OyTH peai3oBaHUN y BUTIISAAL
BIJIOMOi CHCTEMHU i3 3BOPOTHHM 3B'S3KOM TIO HIUTBHOCTI PO3MOALTY MOYaTKOBUX yMOB. OTpuMaHa
ominka crany [{[]) BUKOPHCTOBYEThCS MPH PIllICHHI APYroi 3aaadi - ONTHMAIbHOIO YIIPaBIIiHHS
THUILY

() = -0(0)(0). Sx Bke Bia3HaYamocs, 3aBAaHHS ONTHMAIbHOIO YIPABIIHHS 3a3BHYAil
CTaBUTHUCS HA OCHOBI mpuHIMNy bernmmvana abo npunmmy Makcumymy [7-10]. ¥V gkocTi Kpurepiro
MOXXYTb 3aCTOCOBYBATHCS Pi3HI (DYHKIIIOHATN SKOCTI, & TAKOX BEKTOP (YHKIIIOHATIB.

3. Mooenw neniniithoi ounamixu nogedinku OIIP.
Y3azanvnena mooenv ounamixu cmany/nosedinku cyo'ekma I1P, moomo, OIIP

Mooenv dunamiku y npocmopi yacy:

0o
LDt () S GID RN G Yy (010 )+ (),
DD_ O Op O 0o E N g Op O 0 Oh Og
=
= 1, ..... y Dri
G RO R G (R0 SRy (VISR G
o0 E 0o E O Og 0=1 Dj Og
i:]., 2, vy Uoo

Ilpocmoposea mooenv ounamixku nogedinku OIIP:
Uoy 0
]
. Oo(=0) = Do0o(0, D)oo, D) [He (Do) — X Ooo(Co ) 0 0a(0, D)] +
3 0200(0,0) S SN
+33 [ +0 (0,0 +00(0), 0@0,0)=0 (D =1,0,
D=1 0T 2 0 0 0 U 0
U — 0
o M=otoMe-0 M+ 0 E%[' (N1,

o [ =1 TH’_‘ ’_M

i :1, 2, vy Uoo,

oo J Oop 0

ne X(t, ) — BEKTOp CTOXACTUYHHX MPOCTOPOBUX 3MIHHHMX CTaHIB CKJIQJHOI CHCTEMH
(HampUKIIaa, CTaH «CBIIOMOCTI», TOOTO «MO3KY»); q = (q1, (2, (3) — TOYKa y MpPOCTOpi CTaHIB
(HAmPUKIIa, KOOPJAMHATHA TOYKH y TIOMI «MO3Ky»), ( [11, [11) - cCTOXacTHYHI MyJIbTHILTIKATHBHI Ta
anuTHBHI  oOyprotoun ckmagosi  mogenmi; {[Joo([Jo )} - mapamerpu B3aemomii  Mix

micucTEMaMHU

(Momamu); {1111} - koedimientu qudysii, 110 BU3HAYAIOTH PIBEHb PO3MOALTY 3MiHHMX cTaHiB; [ (R)
cyMapHe MakcHManbHe (TpaHH4HO AomycTuMe) 3HaueHHs Bektopy X; {[17'}- cykymmicts
napaMmeTpiB/(hakTopiB, sIKi IPU3BOJIATH 10 XAOTUYHOCTI.

TyT BUHUKaE BiIoMe 3BOPOTHE 3aB/JaHHs: OLliHIOBaHHS ((pinbTpalii) Ta i1eHTudikarii, To6TO.
Bu3Ha4YeHHs: omiHku ([, [1*) Bektopa [1([Jr, [1*) Ha ocHOBI moeramHoi 0OpoOKH HabOpy
criocrepexens i npu dikcoBanomy [1* € Q, Tooro. {{I1(, L)|D[ o, LI0], DO[Hk, el ...}
JUTS QJIallTHBHOTO YIPABJIiHHS, a MOTIM i CHHTE3y caMOoro BekTopa ympasiiaas [ = [1([1) =
L[, 0%)], 0 =1,2,.... [7-9]

4. Moodenv Ounamiku kanauy sumiprosans | cnocmepesicenv:
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a)lloBeninka moauHu/cy0'ekTa 3anexuTh Bix Habopy ¢akropiB: <biomoriyHoro,
ComiansHoro, [Icuxonoriunoro, KorauriBaoro, ®@inocodcepkoro, [IpaBoBoro Ta iH.>.
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MOo30K JIFOIMHA MOXE CTBOPHUTH «HOBE», TOOTO. IO HE iCHYE paHime. M030K CTPyKTypHO
nepeOyIoBy€eThCs Ta cToxacTuyHo. CUTHAM Yepe3 CHHAICH MEePEAa0ThCs B O0MIBA HATIPSIMH, 1110
HEMOXJTMBO (Pi3HYHO.

b) PiBHi/sikicTh/bopmu/Trnu CBigomMocTi: nepBuHHa cBigomicts (70%), Bropunna (10%) ta
tpetunHa (1%). Hacenenns nepxkaBu posnoainene sik: 7:2:1. Tperunne maroth ['enii/Cesri. e
OloJoriyHa CBiIOMICTh!

c) Dynxkuis noseainku (PIT) JITTP:

Y (t) = P(t) = <Moau Mo3Ky/byHKIIOHAIBHI 3MiHHI TOpAAKY, 3MiHHI 3C>.

«Mou MO3Ky/(byHKIIIOHAIBHI 3MiHHI TOPSAKY» - 1e 3miHHi: K(t), e(t), r(t), d(t), (t) Ta inmi, a
«3minHi 3C» - 1€ KOHTPOIBOBaHI TOOTO, IO 33/1AI0THCSI KOHCTPYKTOPOM CHCTEM, ajieé B OCHOBHOMY,
3MiHHI BHYTPIIIHHOTO Ta 30BHIMHBOTO cepenopuiia (3C) — e HEKOHTPOJIbOBaHI/ HEBH3HAYCHI/
croxactuuHi/ Henepenbauysani ooypenns: {([), &(1).

[Ipu mbOMy BaXXJIMBO PO3IJISIA Ta OOJIK, 30KpeMa, y MOJIEJi CIIOCTEPEKEHb/BUMIPIOBAHb SIK
MyJIbTHILTIKATHBHE-a U TUBHA cyMimn npouecis (MAC), nanpukiaz, y(t) = h[X(t), {(), &), t] abo,
HAIPHKIIA]I,

y(t) = H((), HX()+ &O). |

Lle six aHayor, HANMPUKIAA, BUPOOHHUIOT PYHKIIIT YU PIBHSHHS CIIOCTEPEKCHB/BUMIPIOBAHb
CTaH CKJIaJTHOI CUCTEMH.

BusnaueHHs kaHaTy BUMIPIOBaHb SK IHTETpaIbHUHN OTIepaTop:

y(1) = JHD(D, )OO0+ (),

a0o iHTerpabHe BU3HAYCHHS KaHATy BUMipIOBaHb:

O
y(1) = 2(0, D)E() L(I0D + ().
Lo
Mooenv ounamiku kanamy cnocmepesicenb/sumipio8aHb—pIieHsHHSL cnocmepedicers | eumipis
nosedinku OIIP (CY):

(0,00 = Jmuo 0(0, D)[E®) (] 0+0(0), =12, ...,

TyT 3ampoBaKeHO O3HAUEHHS, TOOTO. BU3HaueHHsI HOBOTO BEKTODY:
[EOTN] = GOXa(), ..., & OXa(®)", re &) = (), ..., § ().

BuHnukae BijoMe 3BOpOTHE 3aBJaHHS: OLiHIOBaHHS ((uibTpawii) Ta ineHTHdiKalii, TOOTO.
Bu3HaueHHs owiHkn  ([11) Bekropa [J([J1) Ha oOcHOBI moeramHoi O0OpOOKU HAGOpY
CIIOCTEPEKEHB
{0(0, OO0, O], O0[Hk, D], ...} Ansg aganTUBHOrO yIpapliHHSA, TOOTO CamMoro
Bekropy ynpasminust uk= L[((7)], =1, 2, ..., xe k - Homep nepiony ananranii, [1 =1, 2, ... ;
[to, 01, [,

Ct1], ... - iHTEpBaIM Yacy azanTUBHOTO ynpasiainds; ae [1([1, [1) - iIMIyaIbCHO-IIEpEXiqHa MATPHUILL
(ampo inrerpamsHOro omeparopa); [1(t) = (Xu(t), . . ., Xa(t)) — croxactuunuii BEKTOp (CTOBIIEIH)
crany CVY; {(t), &(t) — BIANOBIAHO, CTOXACTHYHI MPOLIECH BHYTPILIHIX Ta 30BHINIHIX 00ypeHb Ha
noseninky OIIP, To6To y Burisiai moxem «MAC» mis agantuBHOrO oriHoBanHs [7-10]. X(t) =
[k(t), e(t), r(t), d(t), e(t)] — BexTOp muHamiku crany noBeninku CY (intenekryanpHoi CIIP), mpuyuomy
k(t), e(t), r(t), o(t), (t) — KOTHITUBHI, eMOIIiiHI, peICKCUBHI, TyXOBHI Ta €TUYHI 3MiHHI («I1apaMeTpH
nopsiaky»). Bekrop X(t, q) = {Xi(t, q), i=1,...,n} — me Habip HPOCTOPOBI 3MiHHI CTaHy
iHTenekTyanbHoi CIIP abo Cy6'ekta ynpaBiiHHs, TOOTO, BEKTOP CTaHY MO3KY.
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5. Mooeniosannsa aoanmuenoi ounamiku nosedinku CY ma IIP (OIIP)

Jlns te[to, T], ToO6TO A1t BChOro iHTEpBady 4Yacy (DYHKI[IOHYBAHHS 1 PO3BHUTKY CHCTEMH,
PO3n00iIeHy CTOXaCTHYHY MOJICIb MOYKHA MTPEJICTABUTH SIK CUCTEMY TU(PEPEHIIiaIbHUX PIBHSHb:

Ooo/00 = D:[DD(D[DD —ZD;&[ Uogoglo — Dijz)+ jm([, D)[[:]"‘ Ug + Up,

ne )1 - KOOpIUHATH CTOXaCTHYHOTO BEKTOPY CTaHy CHCTeMH, pudomy [ =01(1, [y, [,
03); 0, J =1, 2, ..., n; [l - koedimieHT penpoayKiii (PO3MHOKCHHS, 3DOCTaHHS, PO3BUTKY i TOMY
HOI[16HG),
[l - mapaMeTp HacCHYCHHs, OOMEXyIoue 3pOCTaHHS (PEHpOIYKIIiI0); [ - mapaMerp B3aeMOJIii
Mmik migcucremamu; (L], [1, [1) - koedimient mudysii i - i migcucremu (cy0'ekra, areHra) B
Toymi [ =
(g, Oo, (13); Up = U0, )1 U = Ho(0, ) - croxacTUYHI MyJIbTUILTIKATUBHI 1 aIMTHUBHI
CKJIJIOBI MOJIeN, BianoBiano; [ =[] -([1, [J) - KoOOpAUHATH BEKTOPY YIIPaBIIiHHSI u(t) TOOTO
BEKTOP ynpaBJIlHCI)KI/IX pimens; [Jo - MacmralOyroun koedimieHT [] - jamcaciad, ToOTO

2 ) 2 2 2 . .
ﬁéﬁnxyé () DZD + 9+ )éDD a [J € [0, T] - inrepBan 4acy (QyHKIIOHYBaHHS

CHCTEMH.
3a3BuYail BUKOPUCTOBYBaH1 Heniniuni ¢yuxyii nosedinku (HDII) OIIP maioTh cTatuuHuit
XapakTep, ToOTO. BOHH HE BIATOBIAAIOTH pealibHil qUHaMIl (PyHKIIIOHYBaHHS MO3KY, OCOOJIHMBO B
KpUTHYHMX Ta ckinagHux curyauiax (KCC) ta ymoBax. Tomy aktyansHumu € nociijpkenns HOIL, B
SKOMY BPaxOBYIOThCS SIK IMHAMIKY, TaK i CTOXacTU4HICTh BIUMBY 3C, Hanpukiaa, y BUrisiai [7]:

()3 SO0, 0)0(0)00 + 6o D(D):j e, (D) ()OI D+ (D),

(D) .

ne K(t,r) — iMmymbCHO-TIepexigHa Marpuisl (sApo iHTerpanbHoro omeparopa); [1([1) =
(C2(7), . . ., Oo(1))-Bextop (croBmerp) pecypceiB («Bxim» cucremu); &(t) 1 {(t) - croxacTuuni
Ipollecy BIUIMBIB, 110 O0YPIOIOTH (€K30TreHHI1 Ta eHIoreHHi) Ha noeninky OIIP.

[ToBeniHka Sk (QyHKIISI/3MIHHA 3alIeXKUTh B 0araTbox (haKTOpPiB/3MIHHUX CBIJOMOCTI Ta
MJICBIIOMOCTI: KOTHITHBHI, €MOI[iiiHI, pe(eKCHUBHI, €TUKH, HOPM Mopai/Mopaii (COBICTI) —
pemniriifHuX 3amoBijieil, HOpM INpaBa, piBHS KyJIbTypH Ta OCBITH Ta iH. 3ayBa)KUMO, 10 JEsKi 3 HUX
MIBUJIKO,  1HIII — MOBUILHO 3MIHIOIOTELCS.

[Tpyuomy onHI MarOTh JUHAMIKY (HENiHIMHY), a IHII — MPOCTO JeAKl (PYHKIII yacy B
oOMmexxeHHsX. COBICTH 1 MOpaJibHI LIHHOCTI BXOJATh JI0 €TUYHOI CKJaJ0BOi, TOOTO. Tpeba
MOJIEIIOBAaTH €TUYHI 3MiHHI, TOOTO. IpolecH eTUKkU. BoHu BapiaGenbHi.

[Tonsarrs ernuynuii IIII. 3a KOpIOHOM HeMae HaIIMX 3a3HAYEHUX I[OHATh, MOPATBHHUX
IIHHOCTEN Ta 1HII JyXOBHI (pakTopu. HaBiTh 1 A€IKUX 3 HUX HEMae MEepeKsay, 3 UMM 1HOJI
CTpaXkJaro B MyOiKarisx.

Ak mo30k nputimae piwenns. barato (akTopiB, 1110 BIUVIMBAIOTh Ha MPUUHSTTA pillleHb (TEHH,
COLIYM Ta iHIII), cepe]] HUX MO30K — KJIFOUOBHU MEXaHi3M, KWW TOSCHIOE Halmi pimeHHs. Tak
BUHUKJIa HOBA T'ally3b - HEHPOEKOHOMIKa, SIKa HAMara€ThCsi CTBOPUTH MIPUHITUIIOBO HOBY TEOPIFO, sIKa
NOSICHUTD Hallll pillIeHHS TeHaMU, aKTUBHICTIO HEMPOHIB, CIIPUUHATTSM HAIIUM MO3KOM 1H(OpMaIlii,
BIUTMBOM COI[IaJTbHOTO CEPEIOBUINA Ta EBOIIOIIETO.

Hi s xoro He CeKkpeT, Mo AOCHTIHKEHHSI MO3KY — CKJIaTHUH MPOIeC: MO30K CKIIANAEThCsS 3
MIJTBAP/IB HEUPOHIB, sKI 00'€qHAHI AECATKAMHM THUCSY 3B'SI3KIB, 1 3PO3YMITH, SIK TPAITIOE 15
KOHCTPYKIisl HETIPOCTO, MPOTE HEHPOoOIoIorisa AIHIIIIA JOCUTh CEPHO3HOTO MPOrpecy y BUPILICHHI
I[LOTO TTUTAHHSI.

Hocnimxennss benmxamina Jlibeta cuibHO BIUIMHYJIO Ha HelpoOiosoriB 1 ¢inocodis:
JTOCTIAHUK OTPUMAaB MOKJIMBICTh XPOHOMETpPYBATH CBIJOMICTh pilieHb. JIiGeT 3apeecTtpyBaB
eHnedanorpamy, mo0 MOAWBUTHUCS, IO BIJOYBA€TbCA B MO3KY JIIOJMHU B MOMEHT HPUHHATTS
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pillIeHHS], 1 BUSBUB, 1110 YCBIJJOMJICHHS PillIEHHS HAJICKUTh CaMOMY Jiii, [0 LIJIKOM JIOT149HO, IPOTE
JIOCJIITHUK 3BEPHYB yBary Ha Te, 110 CUTHAJI MO3KY 1CTOTHO Tiepen0avyae yCBiIOMIIEHHS PillICHHS, 1
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MOXHa TIepen0ayuTH PIIIeHHS JIOAWHY 3aJI0BrO J0 MOMEHTA, KOJIM BOHa ii YCBIIOMIIOE. 3a
JOTIOMOT OO TIPUJIay 3a MIBCEKYHIU 0 YCBIIOMIICHHSI PIIIICHHS] BOHO BJKE CTaBAJIO BiOMHUM.

Lle BIAKPUTTS MOPOIMIIO BEIUYE3HY TUCKYCiI0 y 0aratbox (paxiBIliB pi3HUX CIIPSIMOBAHOCTEH,
0c00a1BO y (inocodis, SKI 3aMUTAIN IPO T€, HACKUIBKH OOTPYHTOBAHO JIYMKY IIPO Te€, IO CaMme
J0JIMHA TIpuiimMae pimeHHs. [ToBTopHe nocmimkenHs 3 Bukopuctanuasm MPT moka3aio, 1o 3a Bicim
CEKYH/JI JIO TOTO, sIK PIIIICHHS CTA€ YCBIJOMIICHUM, OT'0 MOKHA TIEpeI0AUNTH.

VY HelpoeKOHOMIIlI MPUUHATTS PIICHb BUTJISIAE TAK: BUHUKAE TIPOOJIEeMa, CITiTyE TTOPIBHSHHS
QIbTEPHATHB, BiJOyBaeThCs BHOIp MK albTEpPHATHBAMU Ta OLIHIOETHCS PE3YNbTAT 3 METOIO
OTPUMAaHHS JIOCBITY.

BinbmicTs 10CHiKeHb Y HEHPOSKOHOMIII (POKYCYIOTHCS Ha eTarli NOPiBHAHHS aJIbTEPHATHB.

BBakaeTbcs, 1110, SKIIO BiJoOMa IepeBara, MOJKHaA Iepe0auuTH pieHHs. Tomy OiIbIIICTh
JOCIIIPKEHb CKOHIICHTPOBaHA Ha BUSABJICHHI, YOMY HaM 10100a€ThCsl OZHA OMIIis OlNIblIe, HIX 1HIIA.
Jlis BupilIEHHS IILOTO MUTAHHS MOKHAa CKOPUCTATHCS EKOHOMIYHOIO TEOpI€I0 - MPABHIOM
MaKCHUMi3allii KOPHCHOCTI, 3T1IHO 3 IKUM, BUOMPAIOYN MIXK IBOMa BapiaHTaM, MU BUOUPAEMO TOM,
SIKUWA HaM Oi1bIIe 1moa00aeThest 200, 3T1IHO 3 EKOHOMIYHOIO TEOPI€r0, Ma€ HAHOUIBIITY KOPUCHICTh
(mpuBabIMBICTH OIIIIIT).

Opnak 1mo Mae BeNUKy MLiHHICTB? [l KiIacMyHOi HAayKW BHU3HAUUTH LIHHICTH Maibxe
HEMOXKJIUBO — €KOHOMIIII a0COJIOTHY IIHHICTh HIKOJM HE BU3HAYAIOTh.

JlocniAHUKY MO3KY KaXKyTh, 110 IPOOJIEeMy MOXKHA BUPIIIUTU. 3 TOUKU 30py HEUPOESKOHOMIKH,
Cy0'€eKTHBHI I[IHHOCTI — II€ CEpe/IHE 3HAYCHHS aKTHBHOCTI HEMPOHIB y CIEIiali30BaHUX Tay3sX
MO3KY, 110 KOJYIOTh HaIlll yIIOJA00aHHS.

lepapxiuna cymepBi3opHa Cy0'€KTHO- Ta 00'€KTHO-OpI€HTOBaHA aJalTHBHA IHTEJIECKTyalbHA
cuctema yrpaniiaas Ta [IP ocHOBI iHTerpanbHOT CTOXaCTUYHOT MOZEIT1 HeTIHIHHOT AMHAMIKH MOXKHA
YSBUTH y BUTIsAL (puc. 3).

3a niocymkamu inmezpanbHOi CmoxacmuuHoi Mooeni HeliHitiHOI OUHAMIKU.

u(t)
k(t)
o) | Cyo'ext yupapmimmstaIlP [ o
(CY ma IIP). x(t)
5(t)
X(t, q)
(t) J
v B/C l [HTEP®EIIC u(t) M v v

InTeqexTVaIbHA CHCTEMA, CHCTEMAa 00pOOKH,
MOJIeJIOBAHHS, YIIPABJIIHHSA TA NPHHHATTSA pPillleHb

71 Gy |

Pucynoxk 3. Iepapxis ynpasniaas ta [1P: CYIIEPBI3OP — OIIP OV.

BUCHOBKH: Brepiie po3riisiHyTO y3arajibHeHa 3-X piBHEBa CTPYKTypa i€papXidHoi
IHTErpaJIbHOI IHTENEKTYalbHOI CUCTEMH YIPABIIHHS 1 IPUHHATTA pillleHb y CKIAJHUX CHCTEMax,
3aMpONMOHOBAHO IHTENEKTyalbHa (CYNMEpBI30pHA) CHUCTEMA, CHCTeMa OOpOOKH, MOJEITIOBAHHS,
yIIpaBIIiHHSA Ta TIPUHHATTS PillIeHb, 3 ypaxXyBaHHSIM MOKJIMBOCTI MOJIEIIIOBAHHS BCIX PIBHIB CUCTEMH,
MOJIedl CKJIAJHOTO KaHaly BHUMIPIOBaHb Ta CIOCTEPEKEHb Y BUIJISAL MYJbTUIUIIKATUBHO —
QJIUTUBHOI CyMillll BUMAJIKOBUX MPOLECIB Ta (GaKTOPiB, 3 ypaxyBaHHSAM BEKTOpa 3 HaOOpy: Mozl
CKJIaTHOTO KaHAJly BHMIPIOBaHb Ta CIIOCTEPEKEHb Yy BHIJIAII MYJIBTUILUTIKATUBHO — aJWTHBHOI
CyMilll BHUIAJKOBUX IMpOIECiB Ta (PAKTOPIB, 3 ypaxyBaHHSM BEKTOpa 3 HaOOpy: KocHimueHi,
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eMoyilnti, pegrexcueni, Oyxoeni ma emuyni 3miHHi («IaApaMETPHU TOPSAIKY»), a TAKOX MOJET1
JTUHAMIKY TIPEJICTaBIICHI 1 B PO3MOIUICHUX KOOPAUHATAX.
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VJIK 004.89

Cawcap B.1L. (I[enmpanvruil Hayko8o-0ocaionul incmumym 030poeHus ma giticbkosoi mexwixu 3C
Yrpainu)

HEWPOMEPEXKHHUMN AHAJII3 CTPYKTYPU XMAP HA BOPTY ABIAIIIHHUX
IIVIAT®OPM IS ITPOT'HO3YBAHHA METEOJAHUX Y IPUBEMHOMY
CEPEJOBHUIIII

Anomayia: [lonogiob npucesuena po3podyi cucmemu HeUpoMepedrtCHO20 aHanizy CMpYKmypu xmap Ons
BUBHAYECHHA MEMEOPONO2INHUX OAHUX NIO XMAPAMU HA OCHOBI 300padicerb, OMpUMAanux iz bopma asiayiinux niamegopm.
Axmyanvuicmb memu noaseac y nompedi niosuneHHs moyYHOCMi NPOSHO318 NO200U ) PeLiOHAX i3 0OMENCEHOI HA3EMHOIO
ingppacmpykmyporo. 3anpononoganuii nioxio nepedbavac iHmezpayiro Memooie KOMn 10mepHo2o 30py ma HeupOoHHUX
mepedc Ol GUIYHEHH XAPAKMEepPUCMUK XMap i GUSHAYEHHS MEemeopoloiuHux napamempis (ammocghepruii muck,
WeUOKicmb | HANPAMOK Gimpy, mun ma IHMeHCUHICb onaodig). Apximekmypa cucmemu CKIAOAEMbCA 3 MOOYIs
BUNYYEHHS O3HAK 13 UKOPUCTNAHHAM 320pmKo6ux Heupounux mepexc (CNN) i peepeciiinozo 610Ky 01 NPOSHO3YE8AHMHS
napamempis. Hasuanus modeni 6azyemvcsa Ha oamacemi, wjo GKIOYAE 300PAINCEHHA XMAP PI3HUX MUNIE, OMPUMAHI 3
bopmosux kamep asiayiiHux niam@opm, i 6iOnoeiOHi MemeoodaHi, 3iopani 3 Hazemuux cmanyin. Haconowyemocs na
sadicausocmi 3abe3neuents penpe3eHmamueHoCmi OaHUX, 8PAXYBAHHI CE30HHUX 3MiH | 2eozpaghiunux ocobaugocmeil.
IIpakmuune 3nauenns pobomu nois2ae 6 MOACIUEOCMI BUKOPUCIIANHA CUCEMU 0I5l ONEPAMUBHO20 AHATIZY NO20OHUX
VMO8 y pedicumi peanvrozo uacy. Lle exnouae npocHo3yeanHs no2o0u 014 agiayii, OYiHKY KIIMAMUYHUX YMO08 O
enepeemuKy ma CilbCbko2o 20cnooapcmea. Taxooic pos3ensaoaromscs nepcnekmueu 3acmocy8ants GeaUKUX MOGHUX
MoOenell ma MYyAbMUASEHMHUX CUCMeEM | Y3A2anbHeHHA NioXo0y Oas [HWuxX cgep, maxux AK MOHIMOPUHZ
iHGhpacmpykmypu uu RPUPOOHUX KAmMacmpog.

Knrwuosi cnosa: Hetipomepesxcnutl awanis, CMpyKmypa Xmap, Memeopono2iuni OaHi, Komn iomepHuu 3ip,
320pMKO8I HEUPOHHI Mepedici, NPOZHO3Y8AHHS NO200U, asiayilini niamgopmu,

Abstract: The paper is dedicated to the development of a neural network-based system for analyzing cloud
structures to determine meteorological data beneath the clouds based on images captured from aviation platforms. The
relevance of the topic lies in the need to improve weather forecast accuracy in regions with limited ground infrastructure.
The proposed approach involves integrating computer vision methods and neural networks to extract cloud
characteristics and determine meteorological parameters (atmospheric pressure, wind speed and direction, type, and
intensity of precipitation). The system architecture consists of a feature extraction module utilizing convolutional neural
networks (CNNs) and a regression block for parameter prediction. The model training is based on a dataset that includes
images of various cloud types captured by onboard cameras of aviation platforms and corresponding meteorological
data collected from ground stations. Emphasis is placed on ensuring the representativeness of the data, accounting for
seasonal changes, and considering geographical features. The practical significance of the work lies in the possibility of
using the system for real-time weather condition analysis. This includes weather forecasting for aviation, assessing
climatic conditions for energy and agriculture. The prospects for applying large language models and multi-agent systems
are also considered, as well as generalizing the approach to other areas such as infrastructure monitoring or natural
disaster management.

Keywords: neural network analysis, cloud structure, meteorological data, computer vision, convolutional neural
networks, weather forecasting, aviation platforms.

CyuacHi 3ajaui METEopoJIorii Ta KJIIMATOJIOril BUMararmTh BHCOKOI TOYHOCTI MPOTHO3IB Y
peagbHOMY 4aci, 0COOJIMBO B YMOBAaX PErioHiB 13 0OMEXEHOI0 Ha3eMHOIO 1H(QPaCTPYKTyporo s
300py naHux. TpaauiiiiHi METOAM aHali3y MOTOJHUX YMOB, SIKi 0a3yrOThCSl Ha JaHUX 13 HA3€MHUX
CTaHLIN, CymyTHMKIB a0o pazxapiB, dYacTo He 3a0e3leuyloTh JOCTaTHBOI JeTami3amii Ta
orepaTUBHOCTI. BogHOYac, po3BUTOK aBialliiHUX MIATGOPM, TAKUX K O€3MIJIOTHI JTITaIbHI anapaTi
(BILUTA) Ta niTaku, a TakoXX MOBITPSHHUX 30HIIB, BIJKPHUBAE HOBI MOXIJIHMBOCTI A 300py
BHUCOKOTOYHHX JIaHUX TPO XMAapHICTh OE3MOCepeHbO 3 BHCOTH TOJBOTY. XMapH € BaXKJIUBUM
€JIEMEHTOM aTMoc(epH, M0 NPSIMO BIUIMBAa€ HAa TaKi METEOPOJIOTIYHI MapaMeTpu, SK OIMaju,
arMoc(epHHUil THUCK, IIBUIKICTH i HANpPSAMOK BiTpy. IX cTpykTypa, (popMma Ta JMHAMIiKa MOXKYThb
BUCTYNATH 1HAWKATOpaMHM HOTOAHMX 3MiH. OJHAK aHalli3 XMap y peajlbHOMY uaci Uil OLIHKU
NPU3EMHUX METEO/IaHUX 3aJHINAEThCS CKIAJIHAM 3aBJaHHSM Yepe3 BapiaTUBHICTH XMapHOCTI,
CE30HHI 3MIHU Ta BIUIUB JIOKAIBHUX (DaKTOPIB.

Merta poOOTH mosArae y CTBOpPEHHI KOHLEMII CUCTeMH, SKa 3/1aTHA HAa OCHOBI 300paKeHb
XMap, OTpUMaHUX 13 6opTa aBialiiiHuX 1aTGopm, BU3HAUYATH KIOYOBI METEOPOJIOTIYHI TapaMeTpu
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B TMPU3EMHOMY CEpEIOBHINI. TakWil MiIXiJ] BUMArae IHTErparlii METOMIB KOMII IOTEPHOTO 30Dy,
IJIMOOKOTO HaBYaHHS Ta MPOTHO3YBAHHS YaCOBHUX PAIIB.

JlocimipKeHHsT XMapHOCTI Ta 11 BIUIMBY Ha aTMOC(EpHi MPOLIECH € OJIHIEI0 3 KIIFOYOBUX 3314
KJIIMaToJIOTii Ta MeTeopoJiorii. BUBYEHHS CTPYKTYpH XMap 103BOJISIE HE JIMIIE TOKPAIIUTH TPOTHO3U
MOTO/IU, a ¥ CIIPHUSE PO3YMIHHIO TJI00ATbHUX KIIMAaTHYHUX 3MiH. BUKOpHUCTaHHS HEMpOMEPEK st
aHaJi3y CTPYKTYpU XMap 3 METOI0 BU3HAYEHHS MapaMeTpiB MPU3EMHUX IIapiB aTMOC(epu € HOBUM
MiIX0I0M, 10 00’ €HY€E AOCTIDKEHHST aTMOoc(epH Ta IITYYHOTO 1HTEICKTY, CHPHSIIOUN PO3BUTKY
MDKIUCHMIUTIHADHUX —HanpsAMiB. [IpakTHuHe 3HA4YEHHS MPOMOHOBAHOTO MIJIXOAY BKIIIOYAE
OTICpaTUBHUHN aHaji3 MOTOJHUX YMOB JUIs TUTAaHYBAHHS IOJIBOTIB aBiallii, OLIHKY pPEriOHAIBHOTO
KJIIMaTy Ta MPOTHO3YBAaHHS OMAiB JJIS €KOJIOTIi Ta CUIBCHKOTO IOCHOJapCTBa, MIAHYBAaHHS POOOTH
BIJTHOBJIFOBAHMX JDKEPEJ €HEeprii B €HepreTHlll, a TAK0XX MPOTHO3YBaHHS €KCTPEMaIbHUX MOTOHUX
sBULI JUIA 3amoOiraHHs KatacTpodam Ta opraHizauii eBakyarii HaceieHHs. Po3poOka cucremu
HEHPOMEPEIKHOTO aHaJII3y XMApHUX IMOKPOBIB 13 BUKOPUCTAHHSAM aBialliiHUX TUIAT(GOPM T03BOJIUTH
3HaYHO PO3MIMPHUTU AOCTYI JI0 OMEPATHBHHUX 1 TOUHUX METEOPOJIOTIYHHMX JaHUX, 3a0e3Medyrodu
SIKICHO HOBHUH PiBE€Hb y BUPIIICHHI 3a7a4 MPOTHO3YBAaHHSI Ta MOHITOPUHTY TTOTOIH.

AHani3 ocTaHHIX MyOJiKalii CBIIYUTH PO 3pOCTAIOYUI IHTEPEC 10 BUKOPUCTAHHS IITYYHUX
HEHMPOHHUX MEpEeX JUIsl aHali3y XMapHOCTI Ta HPOTHO3YBaHHS METEOPOJIONIYHUX IapaMeTpiB.
3okpema, nociimkeHns [1] nemoHcTpye eheKTHBHICTh peKypeHTHUX HeilpoHHuX mMepex (RNN) ta
iX KOMOIHaI} y IPOrHO3yBaHHI TeMIEPaTypH HABKOJIMIIHBOTO CEPEAOBUINA, TOCATAIOUN TOXUOKU
14.22%. 1le migkpeciroe MOTCHINA HEUPOHHUX MEPEkK MPH BUPIIMICHHI METECOPOJIOTIYHUX 3aJad.
Iamn po6oru [2 - 10] mpucBsiueHi po3poOli HEHPOMEPEIKHUX MOJCICH MJisi aBTOMaTHYHOI
Kiacudikaiii XMapHUX CTPYKTYp Ha 300pakeHHSX MEPEBAKHO 3 HA3EMHHUX KaMep CIIOCTEPEIKCHHS.
L1e BaxMBO 1151 pO3yMiHHS aTMOC(EPHUX MPOLIECIB Ta MOKPAIIEHHS IPOrHO31B noroau. s uporo
TaKOX BUKOPUCTOBYIOTHCS 300paxkeHHsT XxMap 3 cymyTHHKIB [11, 12]. ¥V cratti [13] po3rasaaeTses
3acrocyBaHHd LI juig aHanizy BETMKUX OOCSATIB METEOPOJIOTIYHMX JAHUX, IO JIO3BOJISE IIBUIKO
BUSIBJSITH 3aKOHOMIPHOCTI Ta MiJABHIIYBAaTH TOYHICTH MporHo3iB. Lli Ta iHmI poOoTH 3aKiTagaroTh
OCHOBY JUJIsl MOJAAJIBIIUX JOCIIPKEHb Y cepl BUKOPUCTAHHS HEHPOHHMX MEpEX s aHali3y Ta
IPOTHO3YBAaHHS METEOPOJIOTIYHUX TapaMeTpiB, MiAKPECIIOIOYN BaKJIHMBICTh IHTErpaimii MeToIiB
IJIMOOKOT0 HAaBYaHHS Y METEOPOJIOTIUHY MPAKTHKY.

[nest BU3BHaUEHHS MTOTOHUX YMOB Ha 3€MJII, IT1JT XMapaMH, 3a JJOTIOMOT'OI0 aHalli3y 300pakeHb
XMapHOT'O MOKpPOBY, 3pOOJIEHUX 13 JIiTaka, BUIVISIAE JIOCUTh MEPCHEKTHUBHOK, OCOOIMBO 3
ypaxyBaHHIM CYYaCHHX MOXIIMBOCTEH KOMII FOTEPHOTO 30py Ta HeHpoHHHX Mepex [14 - 16].
30BHIIIHIA BUIIIS CYLIUJIBHOTO XMapHOTO LIapy, MPUKJIaIu sIKOrO HaBEJEHO Ha puc. 1, 2, Moxe
HaJaTH KOPUCHY 1H(OpMaIiI0 IIPO MOTOAHI YMOBH, OCKUIBKU (popMa, CTPYKTYpa, BUCOTA Ta TUII XMap
OB ’s13aH1 3 MpoliecaMu B aTMoc(depi, BKIIOUarOYM onajau, TUCK 1 BiTep. Lle Moxe OyTu ocoOauBo
KOPHCHUM Y paiioHax, e Hemae MeTeocTaHuii (puc. 1).

Jna peamizamii Takoi i7ei HeoOXiHO BpaxyBaTH Kijibka BakiauBuX etarmiB. [lo-mepiue,
noTpiOHO 310paTH BEIHKY Ta SKiCHY 0a3y penpe3eHTaTMBHUX JaHuX. Lle MaioTh OyTu 300pa)KeHHs
XMmap, 3po0JieHl 3 Pi3HOI BUCOTH, MiJl PI3HUMH paKypcaMu 1 B pI3HOMaHITHUX MOTOJIHUX YMOBaX, a
TaKOX BIJIOBIJHI METEOPOJIOTIUHI JaHi i3 3eMJyi. Bka3aHi JaHi MarOTh OXOIUTIOBATH YCi MOMKJIHBI
THUIIU XMapHOCTI, IOPU POKY, reorpadidHi 30HU Ta eKCTpeMaIbHI OroIH1 sBUIIA. J[0AaTKOBO, MOKHA
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IHTETpYBAaTH 3a3HAuY€HI JaHi 3 I1HIIMMHU JDKepelIaMHu, TaKUMH SIK CYMyTHHKOBI 300pakKeHHS,
MOKa3HUKH aTMOC(EepHOro THCKY Ha PI3HMX BHCOTax, MeTeopafapHi Ta JimapHi mani Tomio. lle
JI03BOJIUTH MOJIEJI1 BpaXOBYBATH He JIMILIE BUIJISLT XMap, ajie i 1HII1 BayKKB1 ()aKTOPH, SIKi BIUTUBAIOTh
Ha moroay. Tako JOIMIIIEHO 3alpOBAJIUTH MEXaHi3MHU 3BOPOTHOTO 3B’SI3KY, KOJIM JIaHI MPOTHO3Y,
OTPHMaHI MOJICIUTIO, 3ICTAaBIISIOTHCS 3 PEATbHUMH CIOCTEPEKCHHSMH, 00 MOKPAIIUTH TOYHICTh
MPOTHO3IB 1 aJanTHBHICTh CHCTeMU. Hampukmala, TEpCrleKTHBHUM HAmpsMOM MOXe OyTu
BUKOPHUCTAaHHA MOJ10HOT ccTeMH B peasibHOMY uaci s aBianii. Jlitak uu BITJIA mae ocHamyBaTucs
CEHCOpaMH Ta KamMepaMH, SIKi B pealbHOMY 4aci NepeaaBaTUMyTh JaHi B OOUMCIIIOBATIbHUNA LIEHTD,
HAIPUKIIAJ, 3a JOMOMOIOI0 CTUIBHUKOBOIO 3B’S3KY, Nl BiH € [17], abo cucremu Starlink. Takox
MOXJIMBUH TMpUHoM Ha OOpPTYy Yy BKa3aHi CHOCOOM HA3eMHUX METEOJAaHUX IS TPOBEACHHS
OIIepaTUBHOrO aHAaJi3y 13 MPOTHO3YBAHHAM MOTOAHUX YMOB IiJ JiTakoM. Lle 703BOIUTH MiABUILUTH
Oe3neKy M0JbOTiB, IPOrHO3YBATH JIOKANI3allil0 30H TYPOYJIEHTHOCTI.

Pucynoxk 2. [1yxki xmapu (¢poto aBTOpa).

[To-gpyre, BaXJIMBO CTBOPUTH MOJENIb HEHPOHHOI Mepexki, sfika Moria © e(eKTHBHO
aHayizyBatu 3i0pani maHi. s 1pbOTO OWIIBHO BUKOPHUCTOBYBATH 3TOPTKOBI HEHPOHHI MEpexi
(CNN) s o6poOku 300paxkeHb, a TakoX pekypeHTHI Mepexi (RNN) abo Tpanchopmepu s
00pOOKH YaCOBHUX 1 IMOCITIIOBHUX JaHUX.

3BICHO, MPOTHO3YBaHHS MapaMeTpiB MOTOAM Ha 3eMJI MiJl XMapaMd MOXE MaTH MEBHY
MOXUOKY Yepe3 CKIATHICTh aTMochepHuX mporieciB. ToMy Ha MepIIomMy eTarti JTOIUTBHO OOMEKUTHUCS
aHaJII30M JIMILE CYIUIBHUX XMapHUX ITOKPOBIB, 1110 MA€ CIPOCTUTH BCTAHOBJIEHHS 3aKOHOMIPHOCTEH
eBOJIIONIT MeTeoqanux. Jis mporo Ge3nmocepeIHbOMY TPOTHO3YBAHHIO aTMOC(HEPHUX MapaMeTpiB
yepes3 aHaji3 AMHAMIKU Bi3yaJIbHUX MPOIIECIB Ma€ NepeayBaTH Kiacu(ikallis cTaHy XMapHHUX LIapiB.
Bupimenns nanoi 3amadi Moxe OyTH 3iHCHEHE aHAJIOTIYHO 3amponoHoBaHoOMY B [ 18] miaxomy 1o
kiacu(ikanii Ce30HHUX YMOB 13 BUKOPUCTAHHSM 3TOPTKOBUX HEWPOHHHX MEPEX, SKMH MOXKHA
YIOCKOHAINTH Ta aJanTyBaTH JUIA 33a7ad BU3HAUYEHHS CYHUTbHOI XMapHOCTI. [Ipu 11boMy OCHOBOIO
nporecy iAeHTUQIKaLli CyHUIbHUX XMapHUX CTaHIB € (OpMyBaHHs JaTacery, IO BKIOYA€E
300pakeHHs PI3HUX THITIB XMAapPHOCTI: CYIIUIBHOT, 9aCTKOBO1 a00 11 BiICyTHOCTI. SIK B>k 3a3Ha4Yanocs,
i 300pakeHHS OTPUMYIOTHCS 3 OopTa JiTakiB a00 OE3MUIOTHUX amapaTiB Ha PI3HUX BUCOTAaX.
BaxxnuBo 3a0e3neunTy pi3HOMAHITHICTh JaHUX - 3HIMKU 3 PI3HUMH PIBHSMHU OCBITIICHHS, y pi3HI
MOPH POKY Ta 3 0aratb0X PerioHiB, 110 T03BOJIHUTH 3pOOUTH MOJIENb OLIbII YHIBEPCATHHOIO.

Jlost kiracuikariii THITIB XMapHOCTI MOKHA BUKOpUCTATH anpodoBany B [18] apxitekTypy Ha
ocHoBi MobileNetV2 [19] (puc. 3), momepennbo HaBueHoi Ha nataceri ImageNet [20], ska
3apeKoMeHIyBasia CBOI0 epekTuBHICTh. CyTTEBO, IO 3aBAaHHS Kiacudikaiii Moke OyTH MO€eTHAHE
3 CErMEHTAIII€I0 XMapHOTro 300pakeHHs1 Ha ocHOBI Mepexi U-Net. [lepen ananizoM yci 300pakeHHs
MPOXO/STh TOMEPETHI0O OOpOOKYy, IO OXOIUIIE 3MiHY pPO3MIPIB, HOpPMaTi3alild KOJhOPIB 1
3a0e3neuye yHigikanito gaHux. Ilicns mporo HeillpoHHa Mepeka MOYMHAE aHAI3yBaTH XMapHe
cepenoBuiie. Bona BU3Ha4ae, 4u MPUCYTHS Ha 300pa)K€HHI CYIUIbHA XMAapHICTh, 1, SKIIO TakK,
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BuUnUIsA€ 11 Mexi. Kpim Toro, B mpolieci cerMeHTaIlii MOXJIMBO YTOYHUTH THIT XMap - HaIPHUKJIa,
NEepUCTi, KymyacTi uuM mapysari. Jlis JOCATHEHHS HaMKpalMX pe3ysibTaTiB BUKOHYETHCS
ONTHUMI3AIls TileprnapaMeTpiB, TaKUX SK po3Mip 0aTdy, KpOK HaBYaHHS Ta KUIBKICTb €IOX.
Hampuknan, 3MeHIeHHs po3Mipy OaTdy mokaszano cebe B [18] sk edextuBHU crocid 3HU3UTH
BUMOTH JI0 OOYHCITIOBAIIBHMX pECypciB, IO MoOke OyTH OCOOJMBO BaKJIWBHM JUIsI YMOB 13
oOMexxeHUM obOnaaHaHHAM. [licng mporo Mojenb MPOXOAWTH eram Bamijzamii. Sk 1 y BuUmagky
kinacudikamii ce3oHHUX YMOB [18], BHKOPHUCTOBYIOTHCS TpPEHYBalbHI, BalliJalliifHI Ta TECTOBI
BUOipku. TOYHICTH MOJENI OIIHIOETHCS 3a JIONOMOTOI0 METpHK, Takux sk Balanced Recall, 1o
JI03BOJISIE BU3HAYUTH ii €)EKTHBHICTh. 3aBEepIIATBHUM €TAllOM € peai3allisi CHCTEMHU Y pealbHOMY
yaci. HaBueHna Mozenp iHTErpy€eThCs y O0pTOBE MporpaMHe 3a0e3neueH s aBialiitHux miatdopm, 1o
JI03BOJISIE  OTPUMYBATH pe3yJIbTaTH KiIacudikalii Ta BHUKOPHUCTOBYBATH iX JUISI IOAAJIBIIOTO
nepeadavyeHHs MOrOAHUX YMOB.

CyuinbHUK
XMapHUM NOKpoB
Knacudikauin
300paxeHb

11 01 T | Heiipomepexa
-1 1 R 1 e
A A B R N ~ : = MPOrHo3y NpU3eMHUX
%’” % ;-;Z & E T4 MeTeoAaHux
= 3 = @ G

Bl

Pressure: 1010 hPa

Wind Speed: 10 km/h

BiacyTHi abo piaki Wind Direction: SE
XMapu Precipitation: None

Pucynok 3. 3acrocyBaHHS momepenHboi KiacHdikaiii XMapHOTO IOKPOBY Ha BXOJi
HEHpoMepeKi MPOTHO3YBAaHHS MPU3EMHUX METEOJaHUX.

Jli1g 6e3nocepeIHbOT0 BU3HAUEHHSI METEOPOJIOTTUHUX JaHUX M1JT CYLIUIBHUMU XMapaMH MOe
OyTH 3ampolOHOBaHa apXiTeKTypa HEWpOHHOI Mepexi, 1o Oa3yeTbCs Ha IHTErpamii Cy4acHUX
TEXHOJIOT1M KOMIT IOTEPHOTO 30py Ta perpeciiHux mozenei. BoHa ckianaeTscs 3 ABOX KIIFOUOBHUX
KOMITOHEHTIB: MOJYJIS JJIsl BUIYYEHHS O3HAK 13 300pakeHb XMap 1 MOZYJS AJIsl IEPETBOPEHHS X
03HAaK y METEOPOJIOTIYHI TapaMeTpH.

[Tepmmii KOMIIOHEHT - MOJYJb BUIYYEHHS O3HAK, - BUKOPUCTOBYE 3rOPTKOBY HEHpPOHHY
Mepexy, Hanpukian, MobileNetV3 a6o EfficientNetB0, sixa ontumizoBaHa i1t poOOTH B yMOBax
oOMexxeHNX pecypciB. Ha BXiJl cuCTeMH MOAAIOTHCA 300pa)keHHs po3MipoMm 224x224x3, ki
MIPOXOJISITH Uepe3 cepito MmapiB 3ropTkH, 00’enHaHHS Ta HOopMaiizaiii. Ha Buxoni dhopmyerbes
BUCOKOPIBHEBUI Habip O3HAK, 10 Bi0Opakae OCHOBHI XapaKTEPHUCTUKU XMApHOI'O CEPEeOBUIIA.
Jlnist cTHCKaHHS IIbOTO 0araTOBUMipHOTO TIPEACTABICHHS Y KOMITAKTHUN BEKTOP BUKOPHCTOBYETHCS
JIOAATKOBUH 11ap 00'eIHaHHS, a AJIs 3a1100iraHHs IepeHaBYaHHIO 3aCTOCOBYETHCS MexaHi3m Dropout.

Jpyruii KOMIIOHEHT, perpeciiiHuii OJI0K, CKJIaIa€ThCs 3 OJTHOTO a00 KiTBKOX MOBHO3B'SI3HUX
mapiB i3 ¢pyHkuiero akruBanii ReLU. Buxin moaeni npeacTaBieHnit KilbkoMa HeHpOHaMHU, KOXKEH 3
SAKUX BIJNOBIJAa€ 3a MPOTHO3 OKPEMOTo MapameTpa: aTMOoc(epHOro THUCKY, LIBUIKOCTI BITpY,
HanpsIMKy BiTpy abo Tumy omamiB. [[nd KiTbKICHUX HapaMeTpiB BUKOPUCTOBYETHCS (DYHKIIIS
aktuBarlii Linear, Toai sk s kinacudikaminaux - Softmax.

BxigHi nani ang mozeni GopMyroThes 13 300pakeHb XMap, SIKI MOXKYTb OyTH TOINEpPEeIHbO
00pobIIeHi /Ul TOKpaIlleHHs] KOHTPACTY, a TaKOX J0JaTKOBUX METaJaHHX, HAIPUKJIIa/, reoJoKamii
Yl BUCOTH MONbOTy. OKpeMy yBary, 3HOBY > Takd, CHIl NPUAUIMTH CE30HHUM BapiallisiM.
Hampukiazn, 3MMOBI XMapu 9acTo 3/1al0ThCS SICKPABIIIMMHE Yepe3 BIOUTE Bij] CHITY CBITJIO, 1110 MOXE
BIUIMHYTHU Ha MPOTHO3. 3 ypaxyBaHHIM IIMX 3MiH MOJIeNb a[aNTy€eThCs 0 pI3HUX YMOB. BuxinHi naHi
MPEJICTaBIISIIOTE COOOI0 MPOTHO30BaHI METEOPOJIOTIUHI MapaMeTpu SK Yy BUIJISAL perpeciiHux
3HaueHb (TUCK, MBHUIKICTH BITPY), TaK 1 KinacudikamiiHux (Tum omais). J{7s migBUIICHHS CTIHKOCT1

143



MOJIEJTI IO PI3HOMaHITHUX YMOB 3aCTOCOBYIOTBHCSI TEXHIKM ayrMeHTaIlli, Takl K oOepTaHHs, 3MiHA
SICKPaBOCTI Ta IEpEeBEPHEHHS 300paXKEHb.

HaBuanust mopneni 6a3yeThcst Ha BUKOpuUcTaHHI (yHKIi BTpaT Mean Squared Error mms
perpeciitnux nporHosiB i Categorical Cross-Entropy mist xnacudikanii. 'inepnapamerpu moneni
BKJIFOYAIOTh pOo3Mip 0ardy, MOYaTKOBHM KPOK HABYAHHS Ta ONTHUMI3aTop. Peamizaliis apxiTeKTypu
Moke OyTH BHKOHAHa 3a JIOIIOMOTO0 MOMyJsipHUX (ppeiiMBopkiB, Takux sik TensorFlow/Keras a6o
PyTorch.

JIJis TOabIIOro PO3BUTKY CUCTEMH IEpeI0avueHo 1HTEeTpallilo MeXaHi3MiB CAMOHABYAHHS,
10 JI03BOJIUTh AJaNTyBaTH MOJEIb JI0 HOBHMX THIIIB XMApHOCTI 4YM METEOPOJIOTIYHHUX YMOB.
JlomaTkoBO MOXKITMBO BITpoBanuT Moay b Explainable Al, sikuii 3a6e3neunth npo30picTh MPOTrHO3iB
1 IOKPAIIUTH iX IHTEPIPETOBAHICTh. LI apXiTeKTypa € THyYKO0, MacIITaOOBAaHOO Ta BiJIKPUBAE HOBI
MOYKJIMBOCTI I TOYHOTO BH3HAUEHHS METEOPOJIOTIYHHX JaHUX 33 300paKCHHIMHU XMap.

VY 3amponoHoBaHii apXiTeKTypl METeo IaHi IPH HaBYaHHI TOJIAI0ThCS HA BUX1J, TOOTO BOHH
BUCTYNAIOTh LITHOBUMH 3HAYCHHsAMH (targets) /i onTuMmizalii Moneni, moaiOHO A0 TOTro, SIK Iie
pobuThcs B 3a7adax perpecii abo kimacudikarii. Bonu He € BXiTHUMU JaHUMHU, K 11€ MOTJIO O OyTH
B 3a/1a4ax, JIe MOJEJb BUKOPHUCTOBYE JIOMOMDKHY iH(popMmamiro s aHamizy. Ha Bxix momarotbes
TUIbKM 300paxkeHHs xMap. Lle ocHOBHI faHi, 3 SKUX Mojedb OyJe BUMTUCS BWIydaTH o3Haku. Ha
BUXOJ1 MOJENb MPOTHO3yE Halip METEOpOJIOTIYHHMX MapaMeTpiB, a caMe: perpeciiHi 3HaueHHS,
HANPUKIIAJ, THCK, IIBUIKICTh BITPY; KiacuikamiiiHi kareropii (TUI omaniB, THUI XMap, HAIpPSIM
BiTpYy). Lli mapameTpu NOPIBHIOIOTHCS 3 €TAIOHHMMH 3HaYeHHAMHU (ground truth) 3a momomororo
BignoBiaHux ¢yHkIiil BTpat (loss functions).

CyTTeBo, 10 U KOKHOTO 300pa)KeHHS XMap B HaBUaJlbHOMY HAOOpl JaHUX Mae OyTH
BIJIMOBITHUI HAOIp IIJILOBUX METCOPOJIOTTYHHMX IapaMeTpiB, 310paHuX 13 Ha3eMHUX METCOCTAHIIIN
a00 1HIIUX JpKepel (HalpuKiIal, CynmyTHUKIB). [1i1 9ac HaBuaHHS Mepeka HaMaraeThCs MiHIMi3yBaTH
PI3HUIIIO MDXK NPOIHO30BAHMMH 1 peajJbHUMHU 3HAUYEHHSIMM METEOpPOJIOTIYHMX napamMeTpiB. Takuii
I IX1]T TO3BOJISIE HABUUTH MO/ TeHEPYBATH KOPEKTHI TPOTHO3H METEOJAHNX BHKJTFOYHO HA OCHOBI
aHaizy 300paxeHb XxMap, 0e3 J0JaTKOBUX BXO/IiB a00 MOTpedH B cCerMEHTAIlHII Macli.

B posrisHyTiii 3a1a4i MeTeoJaHi € KOMITAKTHUMH 3HAa4eHHSIME (HabopoM uucen abo KiiaciB)
1 He MalpTh MPOCTOPOBOI NMPUB’SI3KU, K y CErMEHTALIWHUX 3ahadax. ToMy CTPyKTypa MoJeli
CKOpillle  Harajaye apxIiTeKTypy g  OaraTo3HayHOro NporHozyBaHHs  (multi-output
regression/classification), a He U-Net 3 cermeHTarii 300pakeHb.

Pazom 3 TuM, B TaHOMY BHUIAJIKy BIATOBIAHY HEHPOMOJIEIh MOXKHA PO3TIISIATH K Pi3HOBU]
mogeni Image-to-Text, ane 3 amanramiero miJ crenudiky 3agadi NPOTHO3YBaHHS YHCIOBUX Ta
KaTeropiaJibHUX METEOPOJIOTIYHMX NaHuX. K BimoMo, y 3amadax Image-to-Text monmens aHamizye
300paXeHHsI Ta IeHepye TEKCTOBUM omuc. Y BHMAJKy, IO PO3MIIAJAETHCSA, MOJENb aHai3ye
300pakeHHSI XMap 1 FeHepye CTPYKTYpOBaH1 YMCIOBI (perpeciiiHi) Ta TEKCTOBI (Kiacu@ikaiiiiHi)
JIaHi, 10 BiAMOBIJAIOTH METEOPOJOTIYHUM NTapaMeTpaM. Buxin mMozeni € y3aralbHeHUM "TeKcToM",
TOOTO ONKMCOM MOTOAHUX YMOB Y BUIJISI/II CTPYKTYPOBAHOTO HA0OpY JaHUX.

Ak 1 B knacuuHii Image-to-Text apxiTekTypi, B oONucaHIi MeTeo3anadl MOXJIUBO
BUKOPUCTOBYBAaTH CYKYIIHICTb €HKojAepa Ta jekojaepa. Enxonep (mampuxian, MobileNetV3,
EfficientNet) mepeTBoproe 300paxkeHHsI y KOMIIaKTHE TnpeacTaBieHHs (feature vector), a mexoaep
IpaIIOe HAJ IIUM IPEACTABICHHAM JUIsS TeHepallii BUX1AHUX 3Ha4eHb. Y JTaHOMY BUIIAJIKY L1€ MOXXYTh
OyTu okpeMi JiH1iHI a00 KinacudikaliiiHi mapu Jisi KOKHOTO IapameTpa.

BuxinHi MeTeosjaHi MOXYTh OyTH IpeACTaBIeHI B TEKCTOBIN (opMi, Hanpukia, y Gpopmari
yaml, sk moka3aHa Ha puc. 2. ['eHeparlisi TaKuX CTPYKTypOBaHUX HAaHUX - [I€ OJHMH 3 MOKJIMBHX
pe3ynbTaTiB podotn mozeni Image-to-Text, ame TyT BUXOAU € YITKO BU3HAYeHUMH. [[isi OLIbIN
YHIBEpCAILHOTO ITiIX0Ay MokHa 3aaisiti Image-to-Text moxeni Tumry CLIP abo BLIP, siki npariorots
Ha CTUKY 300pakeHb 1 TekcTy. BoHM MOXyTh OyTH nepeHaBUeHI Ha 3ajadi "300paxKeHHs XMap —
onuc Mereofanux". Hanpuknaa, Moaens renepyBatuMe TekcToBuil onuc: "CyLiibHI XMapH, ONaau
BIJICYTHI, IBUAKICTb BiTpY 10-15 kM/roa, HanpsMok miBHiYHO-3axinHui." IlepeBaru takoro Image-
to-Text migxoAy MoJArarOTh y TOMY, IO MOJENb CTa€ OLIbII YHIBEPCAJIBHOIO 1 MOXE OyTH JIErKo
a/1aliTOBaHA JIJIsl PI3HUX 3aBJaHb.
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['eHepoBanmii BUXiA MOXE€ BHUKOPHUCTOBYBATHCS HE JIMINE SIK YHCJIOBI JaHi, a W K
IHTepIpPETOBAaHUN TEKCTOBUN OmMHUC s omepaTopa abo cucremu. s peanizamii 3a3HaueHUX
MoJeliell BUKOPUCTOBYIOThCA cCydyacHi (peiimMBopku, Taki sk PyTorch, 3 aganroBanumun
KoMmroHeHTaMu encoder-decoder. MoskiiBe HiKJIFOYCHHS BETUKUX MOBHUX Mozaeneit (LLM) [21] mo
KIHIIEBOTO €TaIy JJjIs TeHepallii omuciB Ha mpupoHiid MoBi. Lle# migxig poOuTh iAero me OuTbII
MacimTaboOBaHOIO, JI03BOJISIIOYM IHTErpallilo B 0araToMoAajgbHI CUCTEMH, A€ 300paKeHHS 1 TEKCT
MIPAITIOIOTh SIK JIOTIOBHIOKOYI JKepesna iHpopmartii.

30Kkpema parioHaJIbHUM BUOOPOM [yl OIMCAHOI 3a7a4ul € BUKOPUCTaHHS MYJIbTUMOJAJIbHUX
LLM [21], Takux six LLaVa (Large Language and Vision Assistant) abo Pixtral Ta in. Lli momemni
CTBOpEHI Ui 6araToMoJaNbHUX 3a7a4 1 T03BOJISAIOTH Oe3MocepeTHbO MPAIIOBATH 13 300paKCHHAMH,
T€HEPYIOUM TEKCTOB1 a00 CTPYKTYpOBaHI BUXOJM Ha OCHOBI 30poBoi iHdopmMmarii. Moaeni LLaVa i
Pixtral iHTerpyroTh aHami3 300pakeHb Ta TeHepalilo TekcTy. Lle 1o3Boisie mparoBaTi 3 TaHUMU
XMap fK 13 BXigHOW 1H(oOpMaIi€o 1 OTPUMYBATH TOTOBHUH TEKCTOBHUH a00 YHCIOBUN OITHC
MeTeoqaHux. [Ipu mboMy Hemae moTpedu po3poOIATH CHEIliaIbHY PEerpeciiiHy MOJeNb, OCKLUIBKU
BKa3aHi MOJIEJII a/IallTOBaHi J0 CKJIAAHUX BXIJHUX JaHUX Ta T€Hepallii CTPYKTYpOBAaHUX BHXOJIB.
Pixtral Tako>k MO>Ke IHTErpyBaTH T€HEPAIliI0 KATEropiiHuX (OIa Iy, TUIl XMap) i YUCIOBUX JaHHUX Y
TekcToBoMY (hopmari. 3 MeToro amanTanii a1 KOHKpeTHoi 3aaaui LLaVa mae 6yTu nmepeHaBueHa
(fine-tuned) Ha crneuu@iUHUX NaHUX - 300paKCHHSAX XMap i3 MPUB'SI3KOI0 10 MeTeomaHux. Lle
JIO3BOJIMTH QJANTyBaTH MOJENb J0 YHIKaJIbHOI 3ajadi, A YOro HeOoOXiJIHO CTBOPUTH
CIeIiaIi30BaHMiA JjaTaceT 3 mapamu '"300pakeHHS xmap — MeteonaHi". Takwii jmartacer, sIK BiKe
3a3Hayaniocs, Mae BKIIIOUATH 300paskeHHs XMapHUX mapiB (cynyTHUKoBi, 3 BILUIA, 3 nitaka), a Takox
BIJIMOBIAHI JaHi mpo atMochepHuil THUCK, BiTep, OMaad, OTPUMAaHI 3 HA3eMHUX METEOCTaHIIA 4H
CYIyTHUKOBUX CEHCOpiB. 300pakeHHs mofjaeTbesa Ha Bxin moxeni (LLaVa abo Pixtral), a monens
Jalli TeHEpye TEKCT 13 OMUCOM METeOJaHNX. BUXigHuA pe3ynbTaT Moke OyTH HaJaHUW SIK y BUTIISAII
TOTOBUX TEKCTOBHX ONUCIB (Hanmpukiaf, "mBUAKICTE BiTpy 10 M/c, onmanu BiacyTHi"), Tak 1y hopMmaTi
JSON mist momanbmoi 06pooku. LLaVa migrpumye mosicHEHHS CBOiX MPOTHO31B 1 MOXKe, HATPUKJIIAI,
ix KomeHTyBaTH: "300pa)KeHHs IOKa3ye CYLUIbHI IIapyBaTi XMapH, sKi 3a3BMuail MoB's3aHi 3
atMocdepuum trckoM 1005-1010 hPa i Bitpom y niamaszoni 5-10 km/ron." ToHKe HamamTyBaHHS
(fine-tuning) LLaVa 103BosuTh NiepeHaBYMTH ii Ha CBOEMY HAOOpi JaHUX, 00 MTOKPAIIUTH TOYHICTD
nporHosiB. Jlns Pixtral, BpaxoByrounm 1i 3HayHl po3Mipu, 3aMicTh fine-tuning MoXHa
BUKOPHCTOBYBAaTH TEXHIKM JIOJJaBaHHS CHELIaTi30BaHUX IIApiB JUId perpeciiHux 3agad. B cBoro
yepry, Pixtral Mojke BUKOpHUCTOBYBATH CBOE PO3LIMPEHE PO3YMIHHS 30pOBOI iH(pOopMalii 1715 O1IbIIT
ToyHOro aHami3y. [licist goHaBuaHHS ciif nepeBipuTH edexTuBHICT LLM-Moneni Ha HOBHX
300pa’KE€HHSX, OL[IHUBIIH i1 TOYHICTh, BUKOPUCTOBYIOUM MeTpuku MSE 11st perpeciiiHux nporHosis
i TouHicTh (accuracy) s knacudikauiitaux. [Ticis 3aBepIieHHs MPoLecy JOHABYAHHS MOJEIb MOXE
OyTu po3ropHyTa Ha cepBepl un XMapHii miatdopmi Uit aHaii3y 300pa’keHb y pealbHOMY Yaci.

Bka3zani LLM 103B0sI10Th aBTOMaTHYHO F'€HEPYBAaTH TEKCTOB1 PE3yJIbTaTH PI3HUMU MOBAMH,
HAIpUKIIAJ, YKPATHCHKOIO YM aHIIIMCHKOO, 10 3pYYHO AJs iHTerpaiii B rioOaibHI CHUCTEMHU. 3
ypaxyBaHHsSM 3a3HaueHoro, LLaVa Tta Pixtral € BaxnuBUMHU KaHAMIATaMU JJIs BUPILICHHS 3aj]adi
"image-to-meteorology". BoHM 103BOJIIOTH BHKOPHUCTOBYBAaTH TOTOBI TOTYXHI apXiTeKTypu
GaraToMoJJaIbHUX MOJIeNeH, 3BOJITYM 3YCHIUIA 31 CTBOPEHHS CIIELiali30BaHOi CUCTEMH 10 ajanTamii
ICHYIOUHX THCTPYMEHTIB.

[Togasnpiie miaABUIIIEHHS TPOYKTUBHOCTI, aIallTUBHOCTI 1 MACIITAaOOBAaHOCTI TPOITIOHOBAHOTO
niaxony 3a0e3leuyeThCsl BHUKOPHCTAHHAM MynbTHareHTHUX cucteM (MAC) [21]. fx Bizomo,
MYJBTHAT€HTHUN MPUHLIUI TO3BOJISE€ PO3MOJUINTH 3a/ladyl MK pI3HUMH HEWpOoareHTaMH, KOXKEH 3
SKHX CIeI[iaJli3yeThCsl HAa TEBHOMY acleKTi aHamizy. s BupilIyBaHOTO 3aBJaHHS TreHepaiii
METEO/IaHuX MYJHTHATEHTHA CHCTeMa OyJe CKIAJaTUCS 3 KiJTbKOX B3a€EMOIIFOUMX areHTIiB, SKHX
MO>KHA TIOJIIJTUTH Ha KUTbKa KaTeropii, HalpuKIaI:

areHTH-30ipPHUKHU JaHHUX, 0 OTPUMYIOTH 300pa)XKeHHs XMap 13 PI3HUX JKepen (CYymyTHHUKIB,
BIUIA, nitakiB) Ta 34iHCHIOIOTH iX monepeaHio (iabTpalito i 00poOKy;

areHTH-aHAJITHKM, SKI  aHaTI3ylOTh 300pakKeHHS Ta  BWIy4alOTh  crenudivHi
XapaKTEePUCTHUKH;
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areHTU-MPOTrHO3MCTH O0YHUCITIOIOTh METEO/IaHI Ha OCHOB1 BUCHOBKIB are¢HTIB-aHAJIITHKIB;
areHTH-KOHTEKCTYalli3aTOPH YTOUHIOIOTh Pe3yIbTaTH Ha OCHOBI MOTOYHOT I€0JI0KaLlii;
areHTH-MOSICHIOBAYi (OPMYIIOIOTh PE3y/IbTaTH Yy BHUIUIAII TEKCTYy a00 CTPYKTYpPOBaHOTO
BUXOILY.
3aranbHuil puHIMI GYHKIIOHYBaHHS 3a3HaueH01 MAC npouTtocTpoBaHo Ha puc. 4.

Arenr 1: [lonepenus o6po6ka 306paKeHb

‘/6[3061191{& 306pa)1{e:%

Arenr 2: Kimacudikarnis xmap

/{paKTBpIICTIIKII XMap

Arent 3: [IporsHos MeTeogaHmx CrcreMHi iHcTpyRIIil

omeperpHi nporuosu ~ KortekcTyanewi oHoBiens \Qinanesi meTeonani

Arenrt 4: KonTercTHHUH aHami3 Arert 5: TlosscHeHHs pe3yJIbTaTiB

@ykryponam[ﬁ 3BiT

IlenTpansHEH KOOPOHHATOD

Pucynoxk 4. [Tpuniun GyHKI[IOHYBaHHS MYJIbTHAI€HTHOI CHCTEMH I'eHEepallii MeTeoIaHuX 3a
300pakKCHHAMHU XMapHHUX MTOKPOBIB.

PosrnsHemMo OunbIl J€TaJIbHO THUIOBI pojii areHTiB. LlinkomM ouyeBHIHO, IO areHT 3
norepeHp0i 00poOKK 300pakeHb MOBUHEH 3aiiMaTHCS HOPMAIi3alli€lo SCKPABOCTI Ta KOHTPACTY
300pakeHHs, BUALICHHSIM XMapHOTO CEpeoBHUIIA (CErMEHTAallisl 3 BUKOPUCTaHHAM, Hanpukiaa, U-
Net), oLiHKOO CTyIEHS CYIIBHOCTI XMap. ATeHT-aHATITHK 3 Kiackdikailii XMap Jaii BAKOPUCTOBYE
HONEPETHHO HAaBUEHY HEWPOMEpPEXHY MOJAEIb, 1100 BU3HAYMTHU THUIl XMap (TEpHCTi, IapyBari,
KYITYacTi TOIIO) 1 mepeaae pe3yabTaTH areHTy-MPOTHO3KUCTY IS TIOAATIBIINX OOUYNCIICHD.

ATEHT-IPOTHO3UCT PO3PAaXOBYe IapaMeTpu aTMOoc(epHOro cepeloBMINA, TakKi SK THCK,
HIBUJKICTh BITPY 1 HOro HampsMOK, TN omnafiB. Jlis reHepanii TEKCTOBHUX ONUCIB BIH MOXeE
BHUKOPUCTOBYBATH perpeciiini ta pancdopmepni moaeni abo LLM, Taxki six LLaVa uu Pixtral. Arent
3 KOHTEKCTHOT'O aHaJli3y BUKOPUCTOBYE T€OJIOKAIlII0 Ta ICTOPUYHI JaH1 JUIsl YTOYHEHHS MPOTHO3Y.
Hanpuknan, Ko THIOBI 32 CTPYKTYPOIO Ta KOJIBOPOM XMapHy B MIEBHOMY PETiOHI BIITKY 3a3BUYai
NOB’s13aHI 3 JIOIIEM, a He 3 TpaZioM, LeH areHT yTOYHUTH pPe3yJbTaTH areHTa-MporHosucta. s
HOSICHEHHSI pe3yJIbTaTiB IPOTHO3Y TeHEPYIOThCS TEKCTOB1 a00 rpadiuHi KOMEHTapl y 3py4HOMY AJIs
KopucTyBada ¢popmari, Harpukiaz: "CyniiapHi IapyBaTi XMapy Ha BUCOTI 2 KM. ATMOC(EpHHI THCK
mig xmapamu - 1012 hPa. Onaau: nomr."

[Iporiec B3aemoii areHTiB 3a0e3nme4y€eThbCs NIISAXOM iX KOMYHikaumii oquH 3 oguuMm. [Ipu
IIbOMY areHTH OOMIHIOIOTBCS JaHUMM dYepe3 IIMHY MOBIJJOMJIEHb a0o 3arajbHUM cepsep,
BUKOpHUCTOBYI0UM (popmat aanux tumy JSON. [Insg koopamHaunii GpyHKIiOHYyBaHHS MoOxke OyTH
BU/AiIEeHUI LEHTpai30BaHUM areHT-KoopAHHATOp a00 pO3MOJIIeHA CUCTeMa MPUUHATTS PilliCHb,
sKa 3a0e3neuye y3ro/pKeHIiCTh J1i. J{71s KO)KHOTo areHTa BUKOPUCTOBYIOTHCS OKPEMI CIieliaai3oBaH1
mojeni (Hampukiana, MobileNet mis knacudikanii, LLaVa mis reneparii Texctis). Po3ropranus
areHTiB MoXxe OyTH 31HCHEHO OKpPEMO y XMapHOMY CepBici, Ha cepBepi abo Ha Oopty BILJIA
3aJIeXKHO BiJl 1X (DYHKITIH.

IlepeBaraMu 3acTOCyBaHHSI MyJIbTHAr€HTHUX CUCTEM € MACIITA00BAHICTh TA THYYKICTh, 10
HHUX MOKHA JIETKO JI0JaBaTH 1HIINX areHTiB I HOBUX 3a/1a4 (HAIPUKJIal, MPOTHO3YBaHHS I'PO3 Y1
cuironazis). 3a gonomororo MAC 3aBnaHHS BUKOHYIOTHCS €(EKTUBHIIIE, OCKUIBKH KOXEH areHT
BIJIMOBIIA€ JIMIIIE 332 CBOIO YaCTUHY POOOTH 1 MOKE€ BUKOPHCTOBYBATH Pi3H1 MOJIEINI a00 alropuTMH,
Taki sK HEHpPOHHI Mepexi, MOBHI MOJEJI Ta METOAM MAIIMHHOTO HaBUAHHS Ui KOHTEKCTHOTO
aHaTzYy.

Omnucana KOHLEMIIS CHOCTEPEKEHHS 32 XMApHICTIO JO3BOJMTH JOCITIKYBAaTH TI00albHI
KJIIMaTU4H1 3M1HH, BUBYATH MPOIIECH YTBOPEHHS XMap, BILUIUB BITPOBUX TeUll HA pPO3IMO/LI BOJIOTH
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Ta JIWHAMIKY omamiB. Y MiJCYMKY, 3a3Hau€Ha i/Ies MOXKE CTaTH HE JIUIIEe 1HCTPYMEHTOM ISt
IPOTHO3YBaHHS TOTOH, e ¥ Ba)JIMBOIO YaCTHMHOIO CHCTEMH MOHITOPHHTY KJIIMaTHYHUX 3MiH. Lle
BIJIKpUBAE MIMPOKUIN CIIEKTP MOXKIIMBOCTEH SIK JJIsl MPAKTUYHOTO, TAK 1 JIJIsl HAYKOBOI'O 3aCTOCYBaHHS,
0CO0JIMBO B yMOBaX 3pPOCTaHHS YBaru /10 KIIIMATUYHUX 1 METEOPOJIOTIYHUX TUTAHb Y CBITI.

Ha 3aBepiienHs cinijl BKa3aTu Ha MOXIIMBI HANPSMU y3arajJbHEHHS IMPOIIOHOBAHOTO MiAXOIY
NPOTHO3YBAaHHS YAacCOBUX PsIiB 4Yepe3 aHali3 JUHAMIKM Bi3yaJbHUX IPOLECIB, OCOOIUBO JUIS
BUpIIIEHHS 3a7a4, IOB’A3aHUX 13 O€3MEeKOI0 Ta ymnpaBliHHAM puzukamu. CyTHICTB 1€l moJsrae y
BUKOPUCTAaHHI Bi3yaJbHOTO aHAN3y Ui IOCIIJOBHOCTI 300pa)X€Hb YU BiJCOMOTOKY 3 METOIO
MOJIEJIFOBaHHS YaCOBHX PSAIB, IO B1100pakatoTh PO3BUTOK MpolieciB y yaci. Hampukmnaz, e Moxe
OyTH PO3IMOBCIO/KCHHS BOTHIO HAaBKOJIO LIMCTEPHH IS MPOTHO3YBAaHHS KPUTUYHMX MOJIHN, SK-OT
MoMeHT BuOyXy. Ilpum TakoMy crieHapii Ha BXiJI CHCTEMH HAJXOAWTh BIJCOTMOTIK abo cepis
300pakeHb, a BUX1IHUMH JJAaHUMH € TOUKA y Yaci 0 0O4iKyBaHOi KpUTHYHOI MOJi1, HAPHUKIIa] BUOYXY
Y1 MOMEHTY TOYaTKy eBaKyallil epcoHaly, KOJIH MPOTUIiS TTOKEXK1 BXKe BTpadyae e(PpeKTUBHICTb.

Po3pobka BiIMmOBiIHOI CUCTEMH IITYYHOTO IHTEJEKTY BKJIIOYAE KiIbKa KIIOYOBUX ETAIliB.
[TounHaeThCs Bee 31 300py W aHOTAIlll JaHUX, IO OXOILTIOIOTH PEaibHI 3alUCH TI0KEXK ad0 1HIIHMX
aBapiiHUX cUTyamii. J{7st HABYaHHS MOXYTh TaK0XK BUKOPHUCTOBYBATHUCS CHHTETHYHI J1aHi, CTBOPEHI
Ha OCHOBI (izmuHux mopmeneit. Jlami ime momepeaHiil aHami3 Bifeo, IiJ 9ac SKOTO CErMEHTAIlis
JIO3BOJISIE BUIUIATH KpUTHYHI 00J1acTi. [{e MokHAa BUKOHYBATH 3a JIOOMOT'O0 Mojiejiei Ha ocHOB1 U-
Net, sxi eQeKTHBHO pO3AUIAIOTh 300pakeHHA Ha HEOOXimHI 30HU. HacTymHuii Kpok - aHami3
OUHAMIKH, SKUA Tiepeadadae OLIHKY XapaKTEePUCTHK, TaKUX SK IUJIOMIA TOMIMPEHHS BOTHIO,
SCKpaBIiCTh YU IHTEHCUBHICTb. J[J1s1 IIbOTO0 MOXHA BUKOPHCTOBYBATH HelipoMmepekHi Mmojeini ResNet,
Vision Transformers ta inmi. [Ticns BuiydeHHs 03HAK Bi3yaJbHOI CIICHU BOHH MOJAIOTHCS Y MOJICITh
YaCcOBUX PSIIIB, SIKA MPOTHO3YE MOJANbIINI po3BUTOK noxii. Tyt miaxonars taki moaeni, sk LSTM,
GRU u4u tpanchopmepu, siki 100pe MpaItorTh 13 YaCOBUMH 3ICKHOCTIMH. Ha OCHOBI HaBYaHHS
BKa3aHUX MoJieJIel MO)KHaA MO0y TyBaTH CUCTEMY, 3aTHY MPOTHO3YBATH Yac A0 HACTAHHSA KPUTHYHOT
noxii. OnmucaHuii TPOILEC TaKOXX BKIIOYA€ PErpeciiiHi po3paxyHKH I TOYHOTO BH3HAYCHHS
3aJUIIKOBOIO Yacy Ta Kiacuikalilo CTaHiB, HANpUKIAZ, HOPMAJIbHOTO, HEOE3MEeYHOro 4u
KPUTUYHOTO.

Jlnst peanizaniii mo/1i0HOT CHCTEMU B pealIbHOMY Yacl HEOOX1AHO MaTH 00J1a JTHAHHS, 1110 3/1aTHE
00po0IATH BiICOTIOTIK 0€3 3HaYHUX 3aTPUMOK. [{e MokHa TOCATTH 3a JOTIOMOTOI0 CHEIiali30BaHUX
obOuncroBasibHUX matdopm, Takux sk NVIDIA TensorRT a6o OpenVINO. ITocTiitHui MOHITOPUHT
JI03BOJISIE TIEPEPaxOBYBATH 3AIMIIKOBHH Yac O KPUTUYHOI MOIi 1 meperaBaTd TONEpeHKEHHS
NepcoHaly, IO 3HAYHO MiABUIIYe Oe3neky. MOXXIMBOCTI 3aCTOCYBaHHS [JaHOTO MiAXOIY
HAJ3BUYAHO MIMPOKI. Y MPOMUCIOBOCTI CHUCTEMa MOKE€ OYTHM BUKOPHCTaHa AJIi MOHITOPHHIY
HOXEX Ha 00’€KTax 13 HeOe3MeUHUMH peyoBUHaMU. BoHa Takok MOxe MPOrHO3yBaTH pyHHYBaHHS
1H(}pacTpyKTypHUX OO’€KTIB, TAKMX SIK MOCTH YHM JaMOH, IIISXOM aHai3y JUHAMIKU TPILIUH YU
BiOpaliii, a y pATYBaJIbHUX CIIy>KOax — CIPOTHO3YBaTH 4ac AJIs €BaKyalii MiJl yac MPUPOAHUX
karactpod. Y meauuHiil cdepi momiOHMN aHaM3 MOXKE 3aCTOCOBYBATHCS [IJISi MPOTHO3YBAHHS
KPU30BHX CTaHIB MAIli€HTIB 3a AMHAMIKOIO 3MIHM Ha MOHITOPAaX (Di310JI0T1YHUX MapaMeTpiB, TAKUX K
CepIEOUTTS Uu TUXaHHS.

3BICHO, po3po0Ka MOJIOHNX CUCTEM CTHKAETHCS 3 BUKIMKAMHU, TAKUMU SIK AEPIIUT SKICHUX
JaHUX, HEOOXiAHICTh BHCOKOI TOYHOCTI MPOTHO3IB Ta 3abe3nedeHHs poOOTH B peaabHOMY dYaci.
Pa3zoM 3 TuM, BUpIlIEHHS IUX Mpo0JieM BIIKPUE HOBI MEPCHEKTUBU AJIsi BOPOBAPKEHHS IITYYHOTO
IHTENEKTy y IPOTHO3yBaHHS KPU30BUX CUTYAIlill, 1110 0a3yIOThCS HA IUHAMIIIl Bi3yalbHUX JaHHX.
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BI3YAJIBHA IHTEPIIPETAIIS HEWPOMEPEXXEBOI'O BUSIBJIEHHS
KIBEPBYJIIHI'Y ¥ IU®POBUX TEKCTAX

Anomauia: 3anpononosano memoo 8izyanvHoi inmepnpemayii Helpomepedces020 BusAsieHHA KibepOyniney 6
yudposux mexcmax, wjo 00380JA€ IHMePRPemysamu piuieHHs Mooeri wooo munie Kibepoyainey. Memoo 6asyemuvca Ha
suxopucmanni modeni BERT ona mynvmunetionosoi knracugixayii ma inmepnpemayiiinoi mooeni LIME, saka gizyanizye
6niue cnie Ha piuteHus moodeni. Memoo 3abesneyye mpu popmamu iHmepnpemayii: Koabopogy naiimpy, odiacpamu
JIOKANbHOI ma 3a2anbHoi axcausocmi cris. Excnepumenmu niomeepounu, wo po3poodnenuii nioxio sabesneuye 3posymine
NOSICHEHHS PiuleHb WIMYYHO20 THMeNeKmYy Wooo0 GUAGIIEHUX MUNie KibepOyiiney..

Knrouosi cnosa: kibepoynine, inmepnpemayis pesyismamis, Heupornni mepexci, BERT, LIME.

Abstract: A method for explaining the results of neural network detection of cyberbullying in digital texts is
proposed, which allows interpreting the model's decisions regarding the types of cyberbullying. The method is based on
the use of the BERT model for multi-label classification and the LIME interpretation model, which visualizes the influence
of words on the model's decisions. The method provides three interpretation formats: a color palette, diagrams of local
and global word importance. Experiments have confirmed that the developed approach provides a clear explanation of
artificial intelligence decisions regarding the detected types of cyberbullying..

Keywords: propaganda objects, propaganda techniques, propaganda detection, natural language processing

INocTanoBKka npodeMu

[IpoGnema kiGepOyniHTYy cTae Jefani akTyalbHIIIOK 4Yepe3 3pOCTaHHS KiJIbKOCTI
KOPUCTYBaYiB COIIAIbHUX MEpPEeX, OCOOIMBO Cepeil MOJIOMI, IO 30UIBIIyE IMOMHUT HAa CHUCTEMH
HEHpOMEpEeKEeBOro BUSABIEHHS KibepOyminry B uudpoBux Ttekcrax [1,2]. 3aBasku mporpecy y
BUKOPUCTaHHI MOfeNel Tpanchopmepis, 30kpema BERT, crano MmoxnuBuM epeKTHBHO BUSBIISTH Ta
kiacudikyBaT THIH KibepOyainry [3]. OmHak CKIaaHICTh IHTEPIpETallil TAKUX MOJEJIeH BUKIUKAE
CYMHIBH IIOJI0 IX BUKOPUCTAHHS Y YyTJIMBUX KOHTEKCTaX. ToMy iHTepIpeTallisi pillieHb € KIF0Y0BOIO
JUIst 3a0e3MeYeHHs JOBIPH Ta MPO30pocTi. Y poOOTI 3alporOHOBAHO METOJ] MOSCHEHHS PIIIeHb
MoJieNl 1100 BUSBIEHUX THUIIB KIOEpOYIIHTY, TaKUX SIK JUCKPUMIHAIIS 33 BIKOM, €THIYHICTIO YU
TeHEPOM.

AHaJi3 ocTaHHIX MyOaiKamin

[Tpobnema HelipoMepekeBOro BUSBIECHHS KIOEpOYJIHTY € HaI3BUYAHO aKTyaJbHOIO Yepe3
foro pyiHIBHUH BIIMB Ha ICHUXIYHE 3/10pOB’s, 0COOJMBO MiAMITKIB Ta Moyoji. CydacHi MeTOau
IPYHTYIOTHCSI Ha TEXHOJIOTISIX OOpPOOKM MPUPOJHOI MOBH, IO JI03BOJISIIOTH aHAII3yBaTH LU(POBI
TEKCTH IS BUSBJICHHS Ta Kiacudikalii pizHux ¢opm kibepOyinry [4].

VY npochimxeHH1 [S] po3risiiaeTscs 3aqaya HEWPOMEPEKEBOI'O BUSBIIEHHS KIOEpOYIiHTY.
Cepen npotectoBaHux Mojaeneil, Takux sk Random Forest, XgBoost, Naive Bayes, SVM, CNN,
RNN ta BERT, ocranns mponemMoHcTpyBaia HalBUILy e(heKTUBHICTB, NocsarHyBIHM 88,8% TouHOCTI
y OiHapHil knacudikanii Ta 86,6% y MyabTHIEHONIOBIH.

ABTopH poboTH [6] po3poOni HOBUII MiAXiA 10 BUSABIEHHS KiOepOyIiHTY, IPOTECTYBaBIIN
SVM, Naive Bayes 1 Logistic Regression y nmoejHaHH1 3 pi3HUMU MeTOJaMH 00poOku TekcTy. byio
JIOBEJICHO, 110 aHani3 HacTpoiB, N-rpam, TF-IDF Ta BU3HaueHHS HEHOPMATUBHOI JIGKCUKU CYTTEBO
MOKPAIYIOTh TOYHICTb, JO3BOJISIOUM fociartu 75,17% y 3amaui knacudikarii.

Inmni  aBTOpW 30cepequsi  yBary Ha iHTeprperamii pesyibraTiB. Hanpukian, y [7]
npejacraBineHo Moaenb BiLSTM-LIME nis 6araroxmnacoBoi kinacudikarii kioepOyniHTy B HPPOBUX
tekcrax Twitter. Bukopucranus LIME 3a0e3neunsio BUCOKY SIKICTh MOSICHEHb, aKI[EHTYIOUH YBary
Ha TOKEHaXx, sIK1 BILIMHYJIX Ha pillleHHS.

Hocnimxenns [8] 3ampornonysaio ancam0i1b BERT ta SVM 3 HanamryBaHHSM mapameTpiB
Juis GaraTtokiacoBoi kinacudikarii kibepOymiHTy y comialbHuUX Meaia. Mojenb 1moka3ana TOYHICTh
90% Ha TecTOBHX JaHUX, IEPEBEPIIMBINY AIbTEPHATHBHI MiAX01u. [ MOSCHEHHSI TPOTHO31B 0YII0
BUKOpucTaHo TexHiKy SHAP, sika Hajana qetaapHU aHalli3 3HAYyIIOCTI O3HAK.
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AHai3 myOiKaIii CBiT4UTh, IO BUSBICHHS KIOEpOYIIIHTY B TU(PPOBUX TEKCTaX € BAKINBUM
1 6araTorpaHHUM 3aBIAHHSM, SIKE€ aKTHBHO JOCIIIKYETHCS 3aBISKU 3HAUHOMY BIUIMBY IIi€i IpoOaemMu
Ha CYCHUIBCTBO. BHWKOpUCTaHHS CydacHMX MoJesieli OOpOOKM MPHPOJHOI MOBH, OCOOIHBO
apxitektyp TpaHcdopmepi, Takux sk BERT, nemoHCTpye BHCOKY €(pEKTHUBHICTh Yy 3aadax siK
OinapHOoi, Tak 1 MynbTHICHOMOBOI Kiacudikamii kidepOyminry. 3okpema, BERT crabinsHO
nepeBepulye iHII MiAXOIU, JOCATAI0YM TOYHOCTI moHan 85% y Oimpmocti ekcriepumeHTiB. 1llo
CTOCYETBhCS 1HTEpIpeTalii, poOOTH MiAKPECIIOITh BAKIUBICTh 3a0€3MIEUCHHS ITPO30POCTI MOJICIICH.
Mertoau, Taxi sk LIME ta SHAP, 103B0JIsIt0TE HE JTUIIE TOSCHUTH PIillIEHHS MOEI, aje i 3po0uTH
il 3acTocyBaHHs OLIBII 3PO3YMUIMM JUIsl KOpUCTyBadiB. lle 0cOONMBO BaXJIMBO y COIiaIbHO
3HAYYIIUX KOHTEKCTaxX, NI MPO30pPIiCTh pillleHb OE3MOCepeHbO BIUIMBAE HA JIOBIPY O CHUCTEM
HITYYHOTO IHTEIIEKTY.

Meta p060TH Ta MOCTAHOBKA 3aB/J1aHb

Merta poOoTu mosiirae B po3poOIi METoay Ui Bi3yalbHOI IHTEpIpeTanii pe3ysbTaTiB
HEHpOMEpEKEBOrO BHUSBJICHHS KiOepOymiHTy B HH(POBHX TEKCTaX, CIPSIMOBAHOIO Ha TOSCHEHHS
pillieHb MOJIeJII IITYYHOTO 1HTEJIEKTY CTOCOBHO BU3HAYEHMX THIIB KiOepOyiHTy. 3alpOnOHOBaHUN
METO/ MOBHHEH 3a0e3ledyBaTH 3pO3yMUTy IHTEpIIPETaIlilo, siKa TO03BOJSE JIIOAMHI aHai3yBaTH
TEKCTOBI O3HAKH, L0 BIUIMHYIU Ha PIlIEHHS HEeHpoMepe:keBoi MoJeni MOoAo ineHTHdIKalii TUITIB
KiOepOyiHTY.

Buxkiax ocHOBHOrO MaTtepiajy

Merton iHTepripeTailii pe3ynbTaTiB HeUPOMEPEKEBOIO BUSIBIICHHS KiOepOYIIHTY B IIU(PPOBUX
TEKCTax repeadavyae CTBOPSHHS BI3yalIbHOTO MOSCHEHHS PIillIeHh MOJECII IITYYHOTO 1HTEIEKTY 010
BHU3HAUEHUX THUMIB KiOepOyminry [9]. CxemaTuuyHe NpeAcTaBlIEHHS LBOIO METOAY HaBEIEHO Ha

pUCYHKY 1.

Bxignigani:

- gagueHa Mozeds BERT ang MynsTunefonosoi knacubixarii;
- IHTepIpeTALiHHA MOZIENE;

- KIIacH Ki0epOymiHry;

- THQPOBHHA TeKCT.

\ J
!

Kpok 1. Ilonepenas odpodka Ta ToKeHi3allis BXiZHOro HH(POBOTO TEKCTY

¥

Kpok 2. MyasTaneiifroa Kiacadikanis 3a TRmaMu Kidepoyminry

!

Kpok 3. Bisyanizania BILIHBY 03HAK A5 KOGKHOT 0 BHAY Kibepoy.minry

!

Buxinmi nami:

- CHIA IPOABY KOKHOTO BHAY KibepOyIHIY B TeKCTi;

- MiTKa IIPO HASBHICTD 200 BIACYTHICT KOKHOTO BHIY KiOepOymiHTry;

- Bi3yali3amnig BIUTHBY O3HAaK Ha pillleHHA [P0 BiJHeCce HHA 10 KIacy KiDepOyIHTy 114
KOKHOTO BHIY.

/

Pucynok 1. Cxema MeToay Bi3yaibHOI iHTEpHpeTallii HelpoMepeKeBoro BUSBICHHS KiOepOyIliHTy B

M (pPOBHUX TEKCTaX

BximHuM#E MaHWMH IHOTO €Taly € HaBY€HA MOJENTb TpaHCHOPMEPHOI apXiTEeKTypu s
MyJIbTUIEHOM0BOI Kiacugikalii, 371aTHa BU3HAUaTH Pi3HI TUMM KiOepOysiHry, Taki sIK BIKOBHUH,
eTHIYHMN, TeHJAepHUN, PeliriiHuil Ta y3aradbHEHHH THUI, 110 OXOIUIIOE 1HII BUAM KiOepOyIiHTY.
Tako BUKOPHCTOBYIOTHCS IHTEpIIPETALlIiHI MOJEI, K1 MOSICHIOIOTh BIUIMB OKPEMHX CJIiB UM (hpa3
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Ha pe3yJbTaTh Kiacudikamii. BXigHuil TeKCT aHaTi3yeThCSl HAa HASBHICTH O3HAK KiOEpOYIIIHTY, MiCIIs
YOro pe3yJabTaTy MiAIal0ThCs IHTEPIIpeTallii.

[epmM KpOKOM € TOKEHi3alis TEKCTY, Micis YOro TEKCTOBI €IEMEHTH TEPETBOPIOIOTHCS B
YHCIIOBI TOCIIOBHOCTI JUTsI TOAAIIBIIOI 0OpOOKH HEHPOMEPEIKEBOIO MOJIEILIIO.

JIpyruil KpoK IoJisirae y MpOrHo3yBaHHI HMOBIPHOCTEH HAJIEXKHOCTI TEKCTY 10 KOKHOTO 3
TUNIB KiOEpOYNiHTY, OLIHIOIOYM HAasBHICTh O3HAK, TAKUX SK BIKOBi, €THIYHI YM TEeHIEpPHI
XapaKTEPUCTHUKH.

TpetiMm eramom € MOSCHEHHS Ta Bizyallizallis pe3yJbTaTiB Kiacu]ikalii 3a JOMOMOTOI0
IHTepIpeTaIiifHoT MOeI, SKa BUSBIISIE BIUIUB OKpEeMHX CIIIB abo (pa3 Ha imeHTU(]IKaIio O3HAK
KiOepOyminry. [y MynbTrinei610Boi kiacudikaiii 4acTo 3aCTOCOBYIOTBCS TaKi iHTEpIpeTauiiHi
Meroau, sk [10]: Local Interpretable Model-agnostic Explanations (LIME), sikuii renepye jnokaibHi

MOSICHEHHSI JUI KOJKHOTO Tiepen0adeHHs], JeMOHCTPYIOUH, SIKi CJIOBa HAiOiibIe BIUIMHYJIM Ha
pesyibrat; SHapley Additive exPlanations (SHAP), 1o 6a3yeTbest Ha TeOpil irop i 00YKCITIOE BHECOK
KO>KHOTO CJIOBa Yy Tiepei0aueHHsl, BpaxoBYIOUH B3a€EMOJIiF0 Mk o3HaKamu; Transformers Interpret,
iHTepnpeTariitna 6101i0TeKa, po3podIeHa CIIeiaibHO JJII MOJIEJIE Ha OCHOBI TpaHc(opmepis,
takux sk BERT, GPT, RoBERTa ra inmi moxmeni 3 Oiomiorekn Hugging Face; meromu, mio
BUKOPHUCTOBYIOTH Attention, siki aHami3yioTh Baru yBaru TpaHchOpMepiB (HApUKIAL, y MOJIEINI
BERT) miis po3ymiHHS BaXXJIMBOCTI OKpPEMUX CITiB 4H (ppa3 y mporeci IpuHHSATTS PillieHb MOJIEILIIO.
BuxigHumu naHUMH € IHTEHCUBHICTH MPOSIBY KOXKHOTO THIY KiOepOyNiHTY B TEKCTI,
BHUpaXEHA Yepe3 MMOBIPHOCTI, SIKi JEMOHCTPYIOTh CTYIiHb HAsSBHOCTI O3HAK JIsi KOXKHOTO KJacy
KiOepOyminry. JlJis KOXKHOTO KJIacy BU3HAYAETHCS MITKa, 1110 BKa3ye HAa HAasBHICTh a00 BiJICYTHICTh
O3HAK, TIPEICTABICHUX YHCIOBHMH 3HAYCHHSIMH, SIKI BiZOOpaKarOThb MMOBIPHICTH IPOSIBY
ki0epOyiHry 3a Ko>kHUM THIOM. Kpim Toro, metoz 3abe3neuye Bi3yasi3allilo BILIMBY KOHKPETHUX
O3HAK Ha MPHUIHATE PILICHHS PO HAJICKHICTh TEKCTY JI0 IEBHOTO KJacy KiOepOyImiHTy, e BaXIIUBI
CJIOBA MiACBIYYIOTHCS BIAOBITHO 0 1X 3HAUYIIOCTI 7151 KOXKHOTO 3 KJIACiB.

TakuMm YMHOM HaBEIEHUH METOJ| Bi3yaJIbHOI 1HTEpIIPETAIlii pe3ylbTaTiB HEHPOMEPEIKEBOTO
BUSBIICHHSI KIOEpOYIiHTY CHpPUATHME KpalloMy pPO3YMIHHIO Ta IMOSCHEHHIO PillleHb, YXBaJlCHUX
MOJICIUTIO HIOAO MYJIBTHIICHOI0BOT Kiacudikamii MUPpPOBUX TEKCTIB Ta BH3HAYCHHUX THUIIIB
KiOepOyIiHry.

s naBuanHa mogneni BERT [11], sika 3acTocoByeTbcs Ha Kpoli 2 METOJy Bi3yajabHOL
iHTepIpeTalii HelipoMepeKeBOro BUSBICHHS KiOepOyTiHTy (pPUCYHOK 1), BUKOPHCTOBYBABCS AaTaceT
«Cyberbullying Classification» [12]. Lleil qatacet MICTUTbh TEKCTOBI MOBIJOMJIEHHS 3 MITKaMH, 1110
BH3HAUAIOTh HAJEXKHICTh KOXKHOTO TOBIIOMIIEHHsA 110 ofgHoro 3 kiaciB: Age, Ethnicity, Gender,
Religion, Other type of cyberbullying, Not cyberbullying.

s waByanns moxeni BERT mynpruneiionoBiit knacudikarii OyB BumaneHuil kinac «Not
cyberbullying» 3 maracery «Cyberbullying Classification», ockiabku BiH HE BUKOPHCTOBYBABCS B
HaBuaHHi. KpiM Toro, kiac «Other type of cyberbullying» OyB 30inbIIeHHi 32 JOITOMOT 00 METOTUKH
SMOTE-GanancyBanHsi, IO O3BOJWJIO CTBOPUTHM CHHTETHYHI 3pa3kd. 3aBISKH LbOMY
MOTIepeIHOMY €TaIy 0OpoOKH JaHUX OyB OTpUMaHMM 30aTlaHCOBaHMI HAO1p 71 HAaBYaHHS MOJeNi
BERT pnn1s 3aBgansst MynbTHII€H010BO1 Kilacuikallii TUIIB KiOepOyIiHTY B TEKCTOBOMY KOHTEHTI.

Jliig ouiHKM e(eKTUBHOCTI METOly Bi3yallbHOI IHTEpIpETalLlli HeMpoMepeKeBOro BUSBICHHS
KiOepOymiHTy B IM(POBHUX TEKCTaX BUKOpHcToByBasocs cepenonuine Google Colab. Moaens BERT
Oyrna HaBueHa JUIsl Kiacudikaiii TakuX TUIIB KiOepOyIiHTY, K BIKOBUM, T€HIEPHUN, PeNiTIHHUH,
€THIYHUIM, a TAKOXX OKPEMO JUIsl TUITY «iHIII KiOepOYIIHTH.

[TokazHuku maxpomeTpuk HaBueHoi mojeni BERT g mynbruneiidonoBoi kiacudikarii
TUIIB KiOepOymiHTy cTaHOBIATH: Accuracy 0.956478, Precision 0.963677, Recall 0.956478 Ta F1
Score 0.960019. 11i 3HaueHHs CBiM4aTh MPO BUCOKY €(PEKTHBHICTH MOJIET] Y BUSIBIICHHI PI3HUX BU/IIB
KiOepOyITiHTy B TEKCTOBOMY KOHTEHTI.

Jia  nocnimxkeHHs OyB BHKOPUCTaHHMM aHIVIOMOBHMM UU(POBHI TekcT, skuil Oyio
IIPOaHaJII30BaHo Ul BUSBIICHHS PI3HUX TUIIIB KiOepOyiHTy 3a JonoMororo HaBueHoi moaeni BERT.
Monens BERT BusiBuia iMOBIpHOCTI HasIBHOCTI PI3HUX BHUIB KiOepOYITIHTY B HIUPPOBOMY TEKCTI,
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30kpema BikoBu# kioepOyminar — 0.06%, erHiuauii — 0.08%, rennepnuii — 0.10%, iammii Tum — 0.09%,
Ta peniriiiauii kidbepOyminr — 99.86%

3acrocyBanns mozaeni LIME st Bi3yanbHOI iHTepIpeTaliisi HeHpOMEpeKeBOro BUSBICHHS
KiOepOyminry 3a gonomororo moneni BERT nns mynbruneiidnosoi knacudikarii Tumnis kibepOyaiHry
B IU(PPOBOMY TEKCTI JO3BOJIWIO OTPUMATH Bi3yalbHI PE3yJIbTaTH IHTEPIIPETAIlli BUSBICHUX THITIB
KiOepOymiHTy, BUKOPUCTOBYIOUM a0COJIIOTHI 3HAYEHHS Bar, MO 300paxeHi Ha pucyHKy 2. [lis
MOSICHEHHS NPUUHATHX pimeHb Moaeiutio BERT ciioBa B iudpoBoMy TEKCTI BUIUISIOTHCS PI3SHUMHU
KOJIbOpaMH: HaWOUIbII SICKpaBUM KOJIIp BKa3ye Ha HaiOLIbIIy Bary cjoBa, IO O3HAa4ae HOro
HaWOIBIIMI BIUTMB Ha pe3yJIbTaT, a HAUCBITIIIINN — HA HAMMCHIIIHA.

BikoBe Ki6ep3ansiKyBaHHSA:
Your God (-0.00) has (-0.00) n6 (0:00) place here. Stick t0/(-0.00) your (-0.00) country (-0:00) and (0.00) stop (-0:00) dragging your
outdated (-0.00) traditions and religions (-0.01) into ours.

ETHi4He Ki6ep3anaKyBaHHA:
m“ place here. Stick to JGU(0100) EOURTIY(0100) and SIPIEOI00) dragging your Blifdated|0i00)
ours

leHpepHe Ki6ep3ansaKyBaHHsA:

Your God (-0.02) has no (0.01) place here. Stick to your (0.01) country (-0.01) and (0.01) stop (-0.01) dragging your outdated (-0.02)
traditions and religions (-0:05) into (-0:01) ours (-0.02).

Your (-0.06) God has no (-0.06) place here. Stick (0.02) to your (-0.12) country (-0.01) and (-0.03) stop (-0.03) dragging your outdated
(0.04) traditions (-0.13) and religions (-0.52) into ours.

PeniriiiHe Ki6ep3anaKyBaHHA:

Your (0.04) G 10 (0.04)
traditions (0:12) and FEliGIGASIOIEE) into

Pucynok 2. AGCotOTHE 3HAYCHHS Bard I BU3HAYCHHS SICKPABOCTI KOJIHOPY 3 METOIO

4) dragging your outdated

re. Stick to JOUR(0H0) &

1HTEepIIpeTalii pe3yapTaTiB BUSBICHHS PI3HUX TUIIIB KiOepOyIiHTry B UG POBOMY TEKCTI

SIk BHIHO 3 PUCYHKY 2, ClIOBa 3 AOAATHUMH Ta BiI'€MHMMHU 3HAUYEHHSIMH BUAUISIOTHCS
OJTHAKOBOIO SICKpaBICTIO. B 1boMy BHIAiKy Ijs BHU3HAYEHHS SCKPAaBOCTI BHKOPHCTOBYETHCS
a0COJIIOTHE 3HAYEHHS Bard, 110 MPU3BOJUTH /10 OJTHAKOBOI SICKPABOCTI JUISl BiJ'€MHUX Ta JI0JaTHUX
3Ha4YeHb. Bia'€éeMHI 3HAa4YeHHs Baru 3MEHIIYIOTh WMOBIPHICTH MEBHOTO KJacy, TOMl SIK JOJAaTHI
3Ha4YeHHs 30UIBIIYIOTH ii, aje oOujBa THUMM MalOTh OJHAKOBUH BIUIMB Ha NPUIHATE MOAEIUIIO
pimennsa. [ns LIME BaxknaumBo He nuIe MOKa3aTH CWIY BIUIMBY CJIOBA, a W HOro HampsiMOK
(mo3uTHBHMN ab0 HeraTMBHMI). Tomy peani3oBaHO MiJXiJ, Ji€ BiA'€MHI 3HAUEHHS MalOTh MEHII
SCKpaBUW KOJIp 1 OKpEeMHUH BIATIHOK MJis JOJATHUX Ta BIA'€MHMX 3HA4Y€Hb. Pe3ynbpraté Takoi
Bi3yastizauii moJaHoO Ha PUCYHKY 3. BuKOpHCTaHHS pi3HUX KOJIBOPIB Ui JOJATHUX 1 BiA'€MHHUX
3Hau€Hb € BAKIMBUM, OCKIJIbKU BIJI'€MHI Baru 3MEHIIYIOTh HMOBIPHICTh NIEBHOTO KJIacy, a I0AaTHI —
3011b1YI0Th. be3 11i€i BiIMIHHOCTI, OJJHAKOBI IHTEHCUBHOCTI PI13HUX 3HAKIB MOXKYTb OYTH CIIPUHHSATI
SK pIBHO3HAYHI, 1110 MO>K€ MTPU3BECTH /10 HEMPABUIBLHOTO PO3YMIHHS PE3YJIbTaTIB.

BikoBe Ki6ep3anfKyBaHHsA:

Your God (-0:00) has (-0:00) no (0-00) place here. Stick 10/(-0:00) your (-0:00) country (-0.00) and (0:00) stop (-0.00) dragging your
olitdated (-0.00) traditions and religions (:0:01) into ours.

ETHiYHe Kibep3ansaKyBaHHA:

Your 66d (-0:00) has (-0:00) ABI(000) place here. Stick to ¥our (-0:00) EEURH(0I00) and (-0:00) St6p|(-0.00) dragging your outdated
traditions (-0.00) and religions (-0.00) into (-0.00) ours.

FeHpepHe Ki6ep3ansaKyBaHHA:
Your God(-ﬁ.m) has (-0.01) no (0:01) place here. Stick to your country (-0:01) and stop(-0:01) dragging your outdated (-0:01) traditions

(-0.01) and religions (-0.05) into (-0.01) ours (-0.01).

0.04) stop dragging your outdated (0.03)

05) place here. Stick (0 OZ)N(-(MK!) your (-0.12)

PeniriiiHe Ki6epsanaKyBaHHA:

VGUF(0104) God [iaS|(0104) fi(0108) place here. Stick [6(0:08) YOUF(0A) E6UAY(0:03) and StoP(0:08) dragging your outdated
traditions (0:13) and FEligioNSI0IE2) into ours (0.04).

Pucynoxk 3. ITiaxin qys inTepnpeTanii pe3ynbTaTiB BUSABICHHS TUIB KiOepOyIiHTY 3 ypaxyBaHHIM
HEraTUBHOTO YU MO3UTUBHOIO THITY BIJIMBY KiHIEBHUH pe3yabTaT
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JlomatkoBo Oynu CTBOpEHi miarpamu i rpadidHoi iHTepIpeTallii BIUIUBY OKPEMHX CIiB
M (ppoOBOTO TEKCTY Ha WMOBIPHICTh BIJIHECEHHS IIBOT0 TEKCTY 10 KOHKPETHOTO THIY KiOepOysiHTy

(pucyHok 4).
IHTepnpeTauis Ans knacy: Bikose kibep3anakyeaHHs IHTepnpeTaLis Ana knacy: ETHIYHe KibepsanskyBaHHs IHTepnpeTais Ans knacy: leHaepHe kibepaankysanHs
God _ traditions - ours _
e . ] s ]
country [ ] country [ ] country | ]
d — - . -
your | ] God [ ] into [ ]
and [ | and | | has [ |
o [ ] outdated | | and [ ]
ours [ ] o [ ] traditions | ]
~0.007 ~0.006 ~0.005 ~0.004 ~0.003 ~0.002 ~0.001 0000 0.001 —0.0025 —0.0020 —0.0015 —0.0010 —0.0005 0.0000 0.0005 —005  -004 -003 002 001 000 001
a) 0) B)
IHTepnpeTauis AR KAacy: IHWKA TN Kibep3anakysaHHs IHTepnpeTauis AnA Knacy: PeniriiHe KibepsanakysanHa
— T eigons | |
wraditions [ vaations | [
your | ] your ]
Your [ ] Your -
no [ | res{
and [ | country [ |
outdated B God [ |
w 1 ol W
stop [ | ws{ [l
oy 1 wce]

1)

Pucynoxk 4. I'padiuna iHTepriperallii BIUIMBY OKPEMHUX CITiB HU(POBOTO TEKCTY HA PE3yJIbTAT

Jliarpamu TOKa3yrOTh, SIK MOJICITb OIIHIOE Bary KOJKHOTO CJIOBa B TU(POBOMY TEKCTI, 3aJICKHO

BiJl HlOro BHECKy B MpuUiHATE piuieHHS. BmuuB ciiB BimoOpa)XeHO y BUIVISAI TOPHU3OHTAIBHUX
CTOBIIIIIB, JOBXKMHA SKUX MOKA3ye€ BEJIMYUHY BIUIMBY (Baru), a KoJip — HaNpsSMOK LIbOTO BILIUBY.
YepBOHI CTOBMII BKa3ylOTh HA HETAaTUBHUH BIUIUB CIIiB, 1[0 3MEHIIYIOTh WMOBIPHICTh BiJJTHECEHHS
TEKCTY J0 TIEBHOTO KJIACy, TOM1 SIK 3€JI€H1 CTOBMII O3HAYAaIOTh MO3UTUBHUN BIUIUB, KU 301JIbIITYE
HMOBIpPHICTh LIOTO BiJIHECEHHS. BenuunHa BIJIMBY BUMIPIOETHCS YHCIOBUM 3HAUYEHHSM, IO

B1J100pa)kaeThCsl Ha TOPU3OHTANIBHIN OC1 rpadika.
Taxox 0yn0 00YUCIIEHO cepeiHE 3HAUEHHS BaXJIMBOCTI KO>KHOT'O CJIOBA JJIsl BCIX KJIaciB, 110

JIO3BOJISIE OI[IHUTH 3arajlbHUH BIUTMB KOXKHOTO CJIOBa 0€3 TPUB'SA3KH /10 KOHKPETHOTO THITY

Ki0epOymiHry. Pe3ynbTat 004nCIeHb NpeACTaBiIeHl y BUTTIAAL larpamMu (pUCYHOK 5).

Ton-10 HaRBaXNMBIWMX CNiB ANA BCIX TUNIB Kibep3anakyBaHHs

religions

traditions

Cnoso

has

outdated

country

0.0

0.4 0.6 08
3aranbHa BaXNMBICTL CNOBa

Pucynok 5. Cepenni 3HaueHHs BaxJIUBOCTI Tom-10 ciiB /1 BCiX Ki1aciB
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OO0umrcreHHs 3araIbHOTO BIUIMBY CIIIB Ha PE3YJIbTaTH MOJEII JIJIsl BCIX THIIB KiOEpOYIIHTY €
BOXJIUBUM JUUIsI pO3yMiHHS poOOTH MOJeNi Ta ii pillieHb. AHaII3 3A1HCHIOEThCS Yepe3 arperarito Bar
CIIiB, SIKI MOJENIb OIIIHIOE JUIS KOXKHOTO KJacy. BHKOPHCTOBYEThCS MOJIYJb Bard, IO O3HaYae
abCoIIIOTHY BEJIMYMHY BIUIMBY CJI0Ba 0€3 ypaxyBaHHs HOT0 O3UTUBHOTO UM HETATUBHOTO 3HAYCHHSI.
e migxim ga€e MOXKIMBICTh BHUSBUTH CIIOBa, SKI MOJCIH BBa)Ka€ BaXKIIMBUMH HE3aJICKHO Bif
KOHKPETHOTO TUITy KibepOyminry. Hanpukian, cioBa, 10 CTOCYIOTHCS Pi3HUX TUIIB KiOepOyiHTy,
MOYKYTh MaTH BUCOKI Bard JJIsl KUTbKOX KJIaciB. SIKIIO CIIOBO Ma€ BUCOKHI 3arajlbHAN BILJIMB, 116 MOXKE
CBIAYUTH PO HOTO yHIBEpCATbHY POJIb Y KOHTEKCTI KibepOyninry. Hanpukian, cioBa, o BKa3yroTh
Ha €THIYHY NMPUHAJICKHICTh 00 PEIIirito, MOXKYTh MaTH BEIMKUN BIUIUB HA KiJIbKa KJIaCiB, TAKUX SIK
«CTHIYHHUH KI0epOyIiHT» 1 «peniriiHuil KioepOymiHTy, 110 BKa3ye Ha MOTEHIIHHY KPOC-MOJAIbHICTh
03HaK, SIKi MOJIeJIb BAKOPUCTOBYE LIS IPUUHSATTS PillieHb. SIKIIO 5K CIIOBO Ma€ BIUIMB JIMIIE HA OJTUH
KJIac, 1€ MiIKPECIIOE HOoro crenudiuHICTh 1 MOXKe BKa3yBaTH HA YHIKAJIbHI MOBHI ATEPHH JJISl LIOTO
BH]Yy KiOepOyIIiHTYy.

OTxe, Bi3yalbHi IHTEpIpETAIlil pe3yabTaTiB HEHPOMEPEIKEBOTO BUABICHHS KiOepOyiHTy B
MUQPPOBUX TEKCTaX JO03BOJIAIOTH OIIHUTH, YU MOJICNIb BHUKOPUCTOBYE PEJICBAaHTHI O3HAKH IS
YXBaJICHHS pIlIeHb, Yd ii NOBEJiHKA 3yMOBJICHA BUIIAJKOBUMH UM HEPEJIECBAHTHUMH (PaKTOpaMu.
Hampukian, SKImo B TEKCTI 3'SBISIFOTBCS CIIOBA, 110 HE MAaKOTh 3MICTOBOIO 3B’SI3KY 3 BIKOBHM
KiOepOymiHroM, ajie MaloTh 3HAYHWUH BIUIUB, 1€ MOXKE CBIAYUTH MPO HASBHICTH TMOMMIKHA a00
yIEPEIKCHHS B MOJICIT.

BUCHOBKH

VY po06oTi 3ampOrOHOBAaHO METOJ Bl3yaan01 iHTEepnpeTamii HerOMepemeBoro BUSIBJICHHS
KibepOy1iHry B LH(PPOBHUX TEKCTaX, IPU3HAYCHHH JUIs [OSCHCHHS PILICHb HEHPOMEpPEKeBOI Moeri
OJ0 THIIB KiGepOyIHIY, BUABICHHX Y TEKCTax. MeETOI € OpHIiHaIBHHM, OCKUIBKU 3IIHCHIOE
IHTepIpeTallilo pe3ybTaTiB A KOXHOIO THILY K16ep6yJ11Hry OKPEMO, IO  JOCSTAETHCS
BUKOPHCTAHHAM MyanI/IJIeI/I6J10B0ro Kjacudikaropa HeilpoMepekeBoi apXiTeKTypHu TpaHchopmep 1
IHTepIpeTaIiifHOT MOAEI MAIlIMHHOTO HAaBYaHHSI.

3aBasKu BUKOPHUCTaHHIO HABYCHOI HEHPOMEpPeKeBol mozeni BERT Jst MYJIbTHIICHOI0BOT
Knacn(blKauu THITIB K16ep6yn1Hry B IU(POBOMY TEKCTi, MOJIEIb BUSBIISE Pi3HI THIIH K16ep6yn1Hry 3
YKa3aHHSM BIZICOTKA HASBHOCTI KOXHOTO 3 HHX. 3F1,ZLHO 3 PO3POOICHIM METOJIOM, s Bi3yanbHOI
IHTepIpeTalii pe3yabTaTiB BUSABICHHs KiOepOyIiHTY BUKOPUCTAHO ITiIXi[I, IO 0a3yeThCsl HA MOJIENI
MamuHHoro HaBuanHs LIME nns nokanbHOT iHTEpripeTOBaHOCTI, 110 JO3BOJISE BI3yalli3yBaTu BIUIUB
KO)KHOTO OKPEMOro CJIOBAa Ha PILIEHHS MOJIeNi HIOAO0 HAJEKHOCTI TEKCTy O MNEBHUX THIIIB
KiOepOyIiHry.

Merton 3abe3neuye TpU criocoOM BizyallbHOI iHTepHpeTalii HelpoMepekeBOro BHUSBICHHS
KiOepOyniHry B HHM(PPOBHX TEKCTaX: 3a KOJHOPOBOIO TMAJITPOI0, 3a JiarpaMaMu JIOKaJdbHOT
BXJIMBOCTI CJIB 1 3a JiarpaMaMy 3arajibHOi Ba)JIMBOCTI CiiB. [HTepmperaliisi pe3ylbTaTiB 3a
KOJIbOPOBOIO MAJITPOIO IPYHTYETHCSI HA BUKOPUCTAHH1 aOCOIIOTHOTO 3HAUEHHS Baru JiIsi BU3HAUYEHHS
SCKpPaBOCTI KOJIbOPY, Jleé HaiOibIl sSCKpaBHil KOJIp BKa3zye Ha HaWOUIbIIMN BIUIMB CJIOBa Ha
anﬁHﬂTe pIlIEHHS MOJIENi, @ HAWMEHII SICKpaBUi — Ha HAWMEHIIIUHA BIUIMB, HE3AJIEKHO B1Jl TOTO, UM
OyB BiH MO3MTHBHUM 4M HeraTHBHUM. [Ipore, st mOBHOT 1HTepnpeTau11 HEOOX1IHO TaKOX PO3yMiTH
HAMPAMOK BILIHBY, OCKIIBKH Bi'€MHI Bark 3MCHIIYIOTh HMOBIPHICT MEBHOTO KIACY, a JOAATHI —
3011b1y10Th ii. ToMy peanizoBano iHTeprpeTalito pimenb Mozeni BERT 3 ypaxyBaHHAM HanpsmMKy
BILTUBY.

BisyanbHa iHTEpIIpeTartis pesynLTarlB 3a JiarpaMamu JIOKalbHOI BaXIMBOCTI CIIB
JIEMOHCTPYE, SIK KOKHE CIOBO BIUIMBA€ HA WMOBIPHICT BIIHECEHHS TEKCTY 10 KOHKPETHOTO THITY
KiOepOymiHTy, TO3BOJISIOUM MOOAYUTH, K MOJEIH OLIHIOE Bary KOXHOI'O CJI0BA, 3aJI€KHO BiJl HOTO
BIUITMBY Ha MpHUIHATE pilleHHs. [HTeprpeTaiis pe3yiabTaTiB 3a JlarpaMaMy 3arajibHO1 BaXJIMBOCTI
cmB moka3zye 10 cimiB, SiKi MOJeNb BBaKa€ BaXJIMBUMM JJIs BU3HAUEHHS TUIY KiOepOymiHTY,
HE3AJIEKHO BijJl KOHKPETHOTO KJIacy.

Pesynbratn CKCHepI/IMeHTiB CBI4aTh, IO 3aMPOMOHOBAHMIT METOJ 3a0esmedye Bi3yanLHy
IHTEPIPETAIIIO PIlICHb 00 HEIPOMEPEKEBOr0 BUABICHH KiOSPOYIIHTY Ha PiBHI, SKHil 103BOIISE
JIOJMHI 3pO3YMITH, sKi O3HAKH TEKCTY BIUIMHYIM Ha NPUAHSTTS PIlUCHb IITYYHAM iHTEICKTOM.
Po3po6nennii MeTo]| iHTeprpeTallii BUSABICHHs KiOepOyliHry y HU(GPOBUX TEKCTaX HAJEXKUThH JI0
KaTeropii 3aco0iB Bi3yaJbHOI AQHAJIITHUKU PIlIEHb IITYYHOTO IHTENEKTY, II0 € HEOOXITHUM s
3a0e3MeueHHs] eTHUYHOCTI, MPO30pOCTi Ta JOBIpM 1O TAaKUX CHCTEM UITYYHOTO IHTEJEKTY B
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CYCIIIIECTBI, OCOONMBO KOIH HIACTBCS IIPO quJmBl MUTaHHs, SK KibepOymiHr. JlocimimKeHHs
H1AKPECITIOE BAXKJIUBICTh HE TUIBKKA TOYHOCTI MOJIEIIEH, alle i iXHbOT HOSCHIOBAHOCTI, 1110 € KITIOUOBHM
JUIsl TOOYIOBU JTOBIpH IO CHCTEM IITYYHOTO iHTEJICKTY.

10.

11.

12.
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Yao6an O.P., Mauswk E.A. (Xmervnuyvxuti nayionanvuuili ynieepcumem, M. XmeibHUybKull,
Yxpaina)

HNIAXIA A0 IHTET'PYBAHHSA EKCIIEPTHUX 3HAHDb B MO/JIEJIb U-NET JJIsA
CEI'MEHTYBAHHSA 306PA’KEHb MPT CEPLIA

Anomayin: Y cmammi 3anponoHosano Hosutl nioxio 00 iHmespy8aHHs. eKCNePMHUX 3HAHb MeOUYHUX Paxieyie
vy Heupouny mepexcy apximexmypu U-Net ons ceemenmysanmns 306pasxcenv MPT cepys. 3anpononosanuii nioxio
nepeobauac GUKOPUCTANHA MEXAHIZMIG Y8acu, KepoBaHUX eKCNePIMHUMU AHOMAYIAMU, MA BNPOBAONCEHHS AHATMOMIYHUX
obmedicenb uepes cneyianizosani Qyuxyii empam. Lle Oae 3mocy noxpawumu 30amHICMb Mepedici CMmeopreamu
AHAMOMIYHO MOYHI MA KIIHIYHO 3HAUYWi ceemenmosani macku Ha 300padxcenni MPT cepys. ITioxio exntouae Oexinvka
NOCNIO0BHUX emania, 30Kpemd, ayeMeHmayilo OaHUX 3 eKCNePMHUMU AHOMAYiamMU, NPOEKMYBAHHA MEXAHI3MY y6azu ma
000aHHs hYHKYIl 6mpam i3 8pAXY8AHHAM AHAMOMIYHUX 0OMedceHb. ExcnepumenmansHi pe3yismamu 3a Habopom Oanux
Automated Cardiac Diagnosis Challenge y 3a0aui cecmenmysants npooemoHCcmpysanu nOKpaweHHs npomu 6a3060i
mooeni U-Net 3a HU3KOI0O MempuK ceemeHmayii.

Kniouosi cnoea: inmecpayis excnepmuux 3uamv, Heupouna mepedsica, U-Net, ceemenmayis, MPT cepys,
MexaHizm yeazu, aHAMOMIuHI oOmedcenHs, QyHKYii empam, ayemenmayis oanux, Automated Cardiac Diagnosis
Challenge.

Abstract: This study presents a novel method for integrating expert domain knowledge from healthcare
professionals into a U-Net-type neural network for cardiac MRI segmentation. By incorporating attention mechanisms
guided by expert annotations and enforcing anatomical constraints through specialized loss functions, our approach
enhances the network's ability to produce anatomically accurate and clinically meaningful segmentations. The proposed
method is detailed in several sequential steps, including data augmentation with expert annotations, the design of an
attention mechanism, and the incorporation of anatomical constraint loss functions. Experimental results on the
Automated Cardiac Diagnosis Challenge dataset demonstrate significant improvements over the baseline U-Net model
across several segmentation metrics.

Keywords: integration of expert knowledge, neural network, U-Net, segmentation, cardiac MRI, attention
mechanism, anatomical constraints, loss functions, data augmentation, Automated Cardiac Diagnosis Challenge.

Berym.

MaruitHo-pe3oHaHcHa Tomorpadis (MPT) cepus € OCHOBHMM 1HCTPYMEHTOM Y MpOIleci
JIarHOCTYBaHHS Ta JIIKYBaHHS CEpLIEBO-CYAMHHUX 3aXBOpIOBaHb. BoHa 3abe3mneuye netanizoBaHe
300pakeHHS CTPYKTYP CepIisl 0e3 10HI13YI0U0T0 BUITPOMIHIOBaHHS. TOYHE CerMeHTyBaHHs 300paKeHb
MPT cepiis € BaXXJIUBOIO AJSl KUIBKICHOTO OIIHFOBAaHHS (DYHKIIIT cepllsl, aHaNi3y >KMTT€3IaTHOCTI
MiOKap/a Ta TUIaHyBaHHsI BTpy4aHsb [1]. 3ropTkosi HeliporHi Mepexi (CNN), 30kpeMa apxiTekTypa
U-Net [2], moka3anu BUCOKi pe3y/IbTaTH B 337a4aX CETMEHTYBaHHs MeMUHKUX 300paxens [3]. OqHak
11l MOJIEJIi YacTO MPAIO0Th 0€3 ABHOTO IHTErPyBaHHs EKCIIEPTHUX 3HAHb MeAUYHMX (axiBiis [4, 5],
1110 MOkKe OOMEXXYBaTH IXHIO 3/1aTHICTh CTBOPIOBATH aHATOMIYHO JOCTOBIPHI Ta KJIIHIYHO MpaBaUBI
CErMEHTOBaH1 MacKH.

Menuuni (¢axiBii BOJOMIIOTh €KCHEPTHUM TIMOOKHMM 3HAHHSIM IIMOJ0 aHATOMIi cepIis,
NaToJIOTIH Ta KJIIHIYHOTO 3HAYEHHS MEBHUX O3HAK Ha 300pakKeHHSX. IHTerpyBaHHS IMX 3HAHb Y
MoJ1eJ11 TTTMOOKOr0 HaBUYaHHS MOKE 3HAUHO MIJBUIIMTH IXHIO POAYKTUBHICTh, OCOOJIMBO Y BUIIAJAKAX
31 CKJIaIHOIO aHaToMmiero yM apredaktamu [6, 7]. CydyacHi miaAXoau, IK OT Me€XaHi3MH yBaru [8] Ta
¢GyHKIIT BTpaT 3 aHATOMIYHMMM OOMEXEeHHSAMH [9], naloTh MEPCTIEeKTHUBU IS BIPOBAIKEHHS
€KCIEepTHOrO J0CBiAy B HelpoHHI Mepexi [10].

V wuiif po6OTI 3arIpOIIOHOBAHO HOBUH MIIX1J IO IHTETPYBAaHHS €KCIIEPTHUX 3HAHb Y HEUPOHHY
mepexy tuny U-Net s cermentyBaHHA 300pakeHb MPT cepus. Hamr minxin BHKOPHUCTOBYE
MEXaHI3MHU yBaru, Ke€poBaHI €KCHEPTHUMHU aHOTAllsIMHU, AJi1 (OKYCyBaHHS Mepexi Ha KIIHIYHO
BOXJIUBUX 00JaCTAX, @ TAKOXK BKJIIOYAE AaHATOMIYHI OOMEXEHHs y QYHKIIIT BTpaT AJis 3a0€3MeUeHHS
PEATICTUYHHIX CErMEHTAITiH.
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3anponoHOBaHMHA MiAXIiA.

3anponoHOBaHUI MiAX1]] 10 IHTETPYBaHHS €KCIEPTHUX 3HaHb Y HEHPOHHY MEPEXY BKIIFOUAE
KUTbKA TIOCHIIOBHUX €TalliB, 110 MOKJIMKAaHI 3a0€3MeYNTH Pe3yJIbTaTUBHY Ta YCIINIHY 1HTETPAaIliio
€KCIIEPTHHUX 3HaHb.
bnok 1. AyrMeHTantisi JaHUX 3 €KCIIEPTHUMU aHOTAIISIMU
Kpox 1.1. 36ip ekciepTHUX aHOTaIlIl
Mennuni (axiBii HagalOTh aHOTamii, MmO BUAUILIIOTH oOmacti iHTepecy (ROI) nHa
300paxkeHHsix MPT cepus, sk ot miBuii nwryHouok (LV), mpaBuii nurynouok (RV) 1 miokapm,
BKJIIOYHO 3 oOmactsimu iHnTepecy (ROI) MPT cepuis, 1110 CXMITbHI 10 TOMUJIOK CETMEHTYBaHHSI Yepe3
naTtoJiorii abo apTedakTH.
Kpoxk 1.2. AyrMeHTaltisi HaBYaJIbHUX JTAHUX
ExcriepTHi aHoTalii BUKOPUCTOBYIOTHCSI Ui CTBOPEHHS OJIATKOBUX KaHAJIIB Yy BXIJHUX
JAHUX, 10 Ja€ 3MOTY MEPEKi HAaBYATHCS SIK 33 BXITHIUMH 300paKEHHSAMH, TaK 1 3a obnactamu MPT,
10 BUJIUJICHI €KCIIEPTAMH.
bnok 2. MexaHi3M yBaru 3a eKCIepTHUM 3HAHHSIM
Kpoxk 2.1. Tnterpariiss MexaHi3MiB yBaru
Apxitekrypa U-Net moamdikoBaHa uepe3 I0laBaHHsS TOpOTiB yBaru (attention gates) y
3’e¢AHaHHSX 13 mpomyckoM (skip connections). L{i moporu oTpUMYyIOTH Mamu O3HaK 3 €HKOZepa Ta
ROI-nani Big ekcriepti, (opMyroun Koe(illi€eHTH yBaru, M0 BUAUISIOTh BaXKJIMBI 001aCTi.
Hexaii X, — BximHa mama o3Hak Ha l-omy mapi, a G — curHaj-HaNpPsAM BiJ €KCIIEPTHHUX
anoraniid. KoedimieHT yBaru o 009uCIIOEThCS 32 (HOPMYJIOHO:
a,=c (W' [X,,G]+b),
ne Wi b — Baru, 3HaueHHS SIKHX BU3HAYAIOTHCS II1J1 YaC HaBUYAHHS HEHPOHHOT Mepexi, [-,] —
KOHKaTeHaIlisl, a 6 — CUTMOi/IHA aKTUBaIiiHa (YHKIIis.
Kpoxk 2.2. Monynsiiist Marn 03HaK
KoedirieHTn yBaru Moayo0Th Maly 03HaK:
Xl =0 L X,
Je J — NOKOMIOHCHTHE MHOJKCHHS.
HaBenena Buiilie MoaysisiLiis Mall 03HaK Ma€e Ha MeTi (OKyCyBaTH yBary MEpeski Ha perioHax,
SIK1 €KCTIEPTH BBAXKAIOTH BAXKIIUBUMU.
bnok 3. BnpoBapkeHHs QyHKIIIH BTpaT 3 aHATOMIYHUMHU OOMEKEHHIMU
Kpoxk 3.1. BusHaueHHs aHATOMIYHUX CITiBBIJTHOIICHB
Ha ocHOBIi ekcniepTHUX 3HAaHb MM0/1aMO TaKi AHATOMI4YHI OOMEKEHHS:
1. Miokap MyCHUTb ITOBHICTIO OXOILTIOBAaTH NOPOKHUHY L V.
2. ITopoxauHa RV Mae GyTu npuiiersiorn 1o Miokap/a.
3. Hempumyctume epeKpuTTsi CTPYKTYP, K1 HE € CYCITHIMH.
Kpox 3.2. ®yHkuii BTpat A7 aHaTOMIYHUX OOMEKEHb
Huxue dpopmanizyemo ¢yHKIIT BTpat, 10 CHPOEKTOBaH] BUKIOYHO JJI YCYHEHHS MOJaHUX
BUIIIE OOMEKEHb!
— (YHKIIiSl BTpAT OXOIUIEHHS, L., !
Lo, = max(0, Area(LV \ Myocardium));
— (byHKLIS BTPAT CyMIKHOCTI, L,y
L,y = Distance(RV, Myocardium);
— (byHKLIS BTpAT NEPEKPUTTSL, Ly -
Loveriap = Area(Overlap of non-adjacent structures).

Kpoxk 3.3. 3aranbHa (GyHKITIS BTpAT )11 aHATOMIYHIX OOMEKCHb

3aranpHa QyHKIIiS BTpAT BU3HAYEHO B TAKUH COCIO:
L = e Lene F Mgiloagi + Movertan

anatomy ‘enc —enc adj —adj overlap —overlap !
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ae A, A

‘enc 1 adj 1

A

oy — BATOB1 KOE(ILIEHTH.
VY po6oTi Oyi10 BIpOBaKEHO TOAATKOBI 3a/1a41, 110 BPaXOBYIOTh €KCIIEPTHI 3HAHHS.
a) Buznauenns anatomivHuX opieHTHpIB: [IpOrHO3YBaHHS KIIFOYOBUX TOYOK aHATOMII.

0) Knacudikarist pa3 ceprst: BusHauenHs ¢a3 cepieBoro mukiy (CUCTONa, JiacTomna).
Onuc paHux.

JlJis OlLiHIOBaHHS 3alPONOHOBAHOTO MiAXOAy OyJIo BHKOpUCTaHO Habip maHux Automated
Cardiac Diagnosis Challenge (ACDC) [1]. Huwxue mogaMo KOPOTKY XapaKTEPUCTHKY HaOOpy JaHHX
ACDC.

— IMamientn: 100 oci6 i3 pi3HUMHU KapIiOJIOTIYHUMHU cTaHAMHU (HOpMa, iH(apKT Miokapna,
JUIaTaniiHa KapioMionaris, rineprpodiyHa KapaioMionaris, aHoMallii IpaBoro NUTYHOUKA).

— 300paxkenns: [locainoBHi 3pizu MPT, 1110 0XOILUTIOIOTE BECh CEPIICBUI ITUKIL.

— AHorauii: Pyuni cermentyBanns LV, miokapaa Ta RV pa3oM 3 ekcriepTHUMHU aHOTAIlisIMH
ROI Ta opienTHpiB.

— Ioxin nanux: Hapuanbnaa BuGipka (70 mamienTiB), Bamigamis (10 mamieHTiB), TECTyBaHHS
(20 marieHTiB).

IIponeaypa HaBYaHHA MOJENI.

Mopnens rnubokoro HaB4yaHHs 3a apxiTekTyporo U-Net HaBueHO uepe3 MiHiIMi3aIliio
KOMOIHOBaHOT QyHKIIIT BTpaT:
Lot = Lagg * Moy

‘anatomy —anatomy

+A,. L

total aux —aux’?

ae L, — GYHKIIA BTpaT CErMEHTYBaHHs, L,, — GYHKIiA BTPAT A 10JATKOBUX 33Ja4, Aanatomy
i A, — BaroBi KoepilieHTH.

Barosi koedimieHTn A iHIIIadi30BaHO EMIIIPUYHO, 3 OIIAAY Ha MPOAYKTHBHICTH 3a
BaJTiarfiitauM HabopoM. besnocepeHbo /1 HaBYaHHS MO/JIe)Ii BUKOPUCTaHO onTuMizatop Adam i3
NOYaTKOBOIO MIBHKICTIO HaBuaHHs (learning rate) 1x10“. Takox J0 Tpoliecy HaBYaHHS OYIIO
3aCTOCOBAaHO pAHHE 3aBEPIICHHS HaBYaHHS Ta METOJ peryispu3anii il 3ano0iraHHs
NepeHaBYaHHIO.

PesyabTarn.

Pe3ynbraTuBHICTH CcerMeHTYBaHHA ouiHeHO 3a koedimientom Dice (DSC), inaexcom
Kaxkapa (Jaccard), Bincrannio ['aycaopda (HD) Ta cepennboro moBepxHeBoro Bijctantio (ASD).

B Tabauui 1 monaHo pe3ynbTaTi 00YMCIIOBATBHUX eKcliepuMeHTIB. 3 Tabmuii 1 6aunmo, 1110
IHTErpyBaHHsI €KCIIEPTHUX 3HaHb 3HAYHO MOKpAIlye MPOIYyKTUBHICTh cerMeHTyBaHHs Mojeni U-Net.
BukopuctanHsd MexaHI3MIB yBaru, KEpOBaHMX EKCIEPTHUMHU aHOTALsIMM, Ja€ 3MOTY MeEpexi
dokycyBaTUCS Ha KJIHIYHO BaXXITMBUX OOJACTAX, IO MIABHUIINYE SKICTh TMOJAHHS O3HAK Y ITUX
perioHax. AHaToMiyHi (yHKLIi BTpaT 3a0e3NedyloTh BUKOHAHHSA pEaiCTUYHUX aHAaTOMIYHUX
CITIBBITHOIII€HbD, 1110 3MEHIITYE TaKl TOMUJIKH, IK HEKOPEKTHE MapKyBaHHs a00 MEPEKPUTTS CTPYKTYP.

Tabnuus 1 — ITopiBHAHHS pe3yabTaTUBHOCTI cerMeHTauii 6a3oBoi Mmozeni U-Net ta
3alpONOHOBAHOTO MiIXOAY

Jinsuka Moznens DSC, Jaccard, % HD, ASD,
cepiist % 1 0 MM | MM |
Basosuii U-Net | 93.0+16 | 87.0+20 | 80+22 | 12+04
Lv Hammiaxin | 955512 | 915515 | 55418 | 08%03
, Basosuii U-Net | 855+25 | 760+30 | 98+31 | 15+05
Mioxapn Han mizxin 89.0+20 | 81.0+25 | 65+23 1.0+04
Basosuii U-Net | 900+21 | 820+25 | 85+25 | 1.3+04
RV Ham miaxin | 93017 | 865220 | 6020 | 09-03

[TopiBHSAHHS MiAXO/IB 32 yciMa METPUKAaMH CETMEHTYBAaHHS UTIOCTPOBaHO HA PUCYHKY 1.
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1 MH(?F—ETMEIH METDWUKW CerMeHTYBaHHA No3uTHEHI METPDUKK CErMEHTYBAHHA
TR a3

1 Kpaue Haks

Bazosa Mmoaent U-Net Bazosa Mmonent LU-Net
3anponoHOBaHWA NiAxia 3anpoNoHOBaHAA NIAXIA

3HaueHHn
3Ha4YeHHR

| Kpaw
1 Kpawe

HD ASD Dice Jaccard
MeTpukn MeTpukn

a) 0)
Pucynok 1 — IlopiBHSHHS pe3yJbTaTiB CETMEHTYBAaHHS MOJICIICH: 3aIIPOIIOHOBAHMN MiAXi]] IEMOHCTPYE
MOKpaIleHHs 3a MeTpukamu Dice Ta Jaccard (o3UTHBHUIM TpEH ) i 3HIKEHHS IIOMHUITOK 3a MeTpukamu HD
ta ASD (HeratuBHHH TpeH) y MOPiBHAHHI 3 6a30Bo10 Moaemto U-Net.

Pucynok 1 nemoHcTpye, 110 3aporoOHOBAaHMM MiXin nepesepurye 6azoBy monens U-Net 3a
BCiMa KJIFOYOBUMH METPHKAMHK cerMeHTaltii. 30kpema, Buiili 3Hadenns DSC Ta Jaccard cBiguats mpo
MOKpAIIeHy SKICTh CErMEHTalii, IO Kpalle BIAMOBiJa€ peaTbHUM aHATOMIYHUM CTPYKTYPaM.
Bonnouac, 3uwkeHi 3HadeHHs HD ta ASD Bka3yloTh Ha MEHIINI TEOMETPHYHI MOXUOKH Y
CETMEHTOBAHUX CTPYKTYypax, M0 € BAXIMBUM JJIs 3a0€3IeUeHHS aHaTOMIYHOT TocTOBipHOCTI. OTXKeE,
IHTerpalisi eKCIepTHUX 3HaHb, MEXaHI3MIB yBaru Ta aHATOMIYHUX OOMexeHb y (yHKLIi BTpar
3a0e3medye MOKpAIICHHS! pe3yNbTaTiB CErMEHTAllil, M0 BKa3ye Ha 3HAYHY MEPCHEKTHBY I[OTO
HiAXO0y JJISi METUYHOTO JIIarHOCTYBAaHHS 32 aHATI30M MEAMYHHUX 300paKEeHb.

Hwkue Takok moaaMo Kiibka 00MEXeHb 3aIpOIIOHOBAHOTO TiIX0/Ty, 30KpeMa:

1. 3anexHicTh BiJl eKCHEpTHUX aHOoTalii. OTpuMaHHS aHOTalil MoOXke OyTH TpPHUBAIUM
MIPOIIECOM 1 HE 3aBXKIH JOCTYITHUM Y MPAKTHYHUX YMOBAX.

2. JlonaBaHHS ME€XaHI3MiB yBaru Ta aHaTOMIYHUX BTPAT 301JIbIIIye OOUHMCITIOBANIbHI BUTPATH.

3. OtpumaHi KUIBKICHI pe3ylbTaTH € HepcreKTHBHUMHU 3a Habopom nanunx ACDC, ogmax
noTpiOHA JOoaTKOBA BaiAalis 3a IHIIMMUA HabopaMu JaHux 300pakeHb MPT cepiis.

BucHoBku.

V wuiii poboTi 3aIIPONOHOBAHO BJIOCKOHAJIIEHUH MMIJX1/] 10 IHTErpyBaHHS €KCIEPTHUX 3HAHb Yy
Mojienb rinbokoro HaByanHs Tuny U-Net s cermenTyBaHHs 300paxkenb MPT cepiis.
BukopucranHs MexaHi3MiB yBaru, 0 KepoBaHi €KCIIEPTHUMH aHOTALIIMU, Ta BIPOBAKEHHS
aHATOMIYHUX (PYHKIIH BTpaT a0 MOKJIMBICTb MOKPAILUTH CETMEHTYBAHHS IPOTH 0a30BOT MOJIEI
U-Net. OTpuMaHni pe3yabTaTi BKa3ylOTh Ha MiABUILIEHHS TOYHOCTI, aHATOMIYHOI IOCTOBIPHOCTI Ta
KJIIHIYHOT PEJICBAHTHOCTI CETMEHTAIIIi.

[Tonanpiia pobota Oynie 30cepekeHa Ha 3MEHIIIEHH1 3aJ7IeKHOCTI BiJl EKCIIEPTHUX aHOTAIliil Ta
PO3MIUPEHH] 3aCTOCYBaHHS [IBOTO MIIX01Y /10 THIITNX 3aBJaHb CErMEHTYBaHHS B METUYHIN
BizyaJizarii.
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MULTI-TASK LEARNING WITH LEARNED CONTEXTUAL INPUTS

Abstract: This paper investigates learned-context neural networks, presenting a multi-task learning framework
that utilizes a fully shared neural network structure augmented with an input vector containing trainable task-specific
parameters. The architecture is notable for its efficient task adaptation mechanism, which leverages a low-dimensional
task parameter space. Theoretically, it is demonstrated that a single scalar task parameter can suffice for universal
approximation across all tasks—an advantage not necessarily shared by more conventional architectures. Empirical
results reveal that, for similar tasks, the dimensionality of the task parameter correlates with task complexity, yet a
compact parameter space remains feasible in most scenarios. Moreover, the task parameter space is characterized by
stable and predictable behavior, facilitating workflows such as model updates with incoming data or learning new tasks
while keeping shared parameters fixed. The architecture also exhibits resilience in handling datasets where individual
tasks are represented by limited data points. Performance comparisons across ten datasets highlight its competitiveness
against similar neural network architectures.

Keywords: learned-context neural networks, multi-task learning, task adaptation, universal approximation, low-
dimensional parameter space, task-specific parameters, model updating, data efficiency.

Our research focuses on addressing non-linear regression problems, particularly those
involving multiple related tasks characterized by complex input-output dynamics and limited data
availability. Such challenges are common in engineering and industrial systems, where tasks often
share structural similarities. Examples include scenarios with repeated instances, like turbines in a
wind farm, or batch processes, such as tracking biomass growth in aquaculture or agricultural fields.
These tasks typically involve sparse data but are inherently similar by nature. To tackle these
problems, an adaptable and highly flexible architecture is essential, enabling efficient task-specific
adjustments even with minimal data. Moreover, the system must support practical operations
necessary for maintaining machine-learning models, such as handling time-dependent variations or
integrating new tasks that emerge over time. For instance, this might involve model updates to adapt
to changing conditions or the incorporation of previously unobserved tasks.

We investigate neural networks that incorporate learned contexts. This architecture features
two key components: a feedforward neural network with shared parameters across tasks and a set of
task-specific parameter vectors. These task parameter vectors are additional inputs to the network,
influencing its computations. Termed "learned contexts,” they are optimized during training alongside
the shared network.

Learned contexts offer an effective mechanism for task adaptation, achieving high adaptability

with minimal task-specific parameters. Furthermore, they enable the discovery of a structured task
parameter space—one that encapsulates the continuous latent characteristics of tasks rather than
merely encoding task-specific information. Such a well-structured task parameter space is
advantageous as it allows for training the shared network only once, shifting focus to task-specific
parameters during daily operations. This approach proves particularly beneficial in scenarios where
re-training the entire model is labor-intensive, computationally costly, involves frequent new data, or
is constrained by limited access to the shared model [1,2].
Theoretical and experimental findings suggest that the learned-context neural network
architecture is particularly well-suited for multi-task problems involving similar tasks or tasks with
limited data. Its capability to represent tasks using low-dimensional and smooth parameter spaces
makes it advantageous in such scenarios.

From a theoretical perspective, scalar task parameters are sufficient for a learned-context
neural network to universally approximate all tasks, as demonstrated in Section 4. The use of
contextual inputs enables meaningful task adaptations, even in compact network configurations.
While the adaptability of the network improves with its size, this flexibility introduces a risk of
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overfitting to specific tasks, which could undermine the benefits of multi-task learning. Therefore,
careful tuning of hyperparameters is essential.

Experimentally, the optimal number of task parameters depends on the specific problem.
However, the architecture generally supports extensive task adaptation using only a few parameters
(Section 5.6). When training multiple tasks simultaneously, increasing the dimensionality of the task
parameters often enhances performance (Section 5.7). Conversely, a smaller parameter space might
be preferable when applying the shared model to new tasks. Practitioners must balance parameter
dimensionality based on domain knowledge and the model's intended use. The architecture’s ability
to learn task parameters that capture latent task properties (Section 5.7, Appendix D) facilitates
efficient updates and maintenance of the model in practice.

On full datasets, learned-context neural networks performed comparably to benchmark
architectures (Section 5.4). On reduced datasets, their performance declined less sharply, indicating
superior robustness (Section 5.5). All tested networks utilized standard fully connected layers,
focusing on task adaptation rather than maximizing performance on specific datasets. Nevertheless,
the learned-context approach could potentially be extended to other architectural designs.

The training process for learned-context networks has been robust, similar to that of other
architectures (Section 5.4). The theoretical construction underpinning Theorem 2 suggests initializing
task parameters to zero, as this avoids “task-encoding” local minima, which are more likely with
random initialization. Zero initialization promotes similar tasks to follow aligned training trajectories,
encouraging grouping of related tasks and fostering a well-structured parameter space. This reduces
the risk of redundant parameter regions representing the same phenomena.

The study explores a fascinating architecture in the field of multi-task learning known as
learned-context neural networks. This architecture is designed to address common challenges in
machine learning, such as dealing with tasks that have limited data or require frequent updates due to
dynamic conditions. By introducing trainable, task-specific parameters into a shared neural network,
the approach achieves a balance between flexibility and efficiency, making it especially valuable in
real-world scenarios where data may be sparse or tasks are interdependent. At its core, the learned-
context neural network consists of a fully shared neural network augmented by trainable task
parameters. These parameters act as contextual inputs, enabling the network to adapt to each task
without requiring significant modifications to its structure. The ability to use low-dimensional task
parameters ensures that the architecture remains computationally efficient while still being capable
of capturing the unique characteristics of each task.

From a theoretical perspective, the study demonstrates the remarkable adaptability of this
architecture. It is proven that even a scalar task parameter is sufficient for the network to approximate
any set of tasks universally. This is an impressive feat, highlighting how learned-context neural
networks can balance simplicity and power. Moreover, the architecture’s design ensures that the task
parameter space is well-behaved, meaning it represents latent properties of the tasks in a meaningful
and interpretable manner. This is particularly useful for applications that require frequent updates, as
it eliminates the need to retrain the entire network. The research also delves deeply into empirical
evaluations, comparing learned-context neural networks with two well-established architectures:
context-sensitive networks and last-layer neural networks. Across ten datasets, ranging from synthetic
examples to real-world applications such as school performance analysis and disease monitoring, the
learned-context networks consistently demonstrated competitive performance. They excelled in
scenarios where tasks had limited data or were inherently diverse, showing less performance
degradation compared to the other architectures.

One of the most striking observations was how the network’s performance was influenced by
the dimensionality of task parameters. While increasing the number of parameters generally improved
performance, the benefits plateaued beyond a certain point. Interestingly, the architecture showed
robustness even when task parameters were kept minimal, a feature that enhances interpretability and
simplifies model management. For example, in datasets like "Sine and Line," where tasks could be
represented with a few nonlinear basis functions, the network performed equally well with a minimal
number of task parameters.
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The training process was another area of focus. The learned-context neural network was
shown to have a stable and reliable training mechanism. The study recommended initializing task
parameters to zero, which facilitated grouping similar tasks and promoted smoother learning
dynamics. This was particularly effective in preventing overfitting and ensuring that the task
parameter space captured meaningful variations across tasks.

Additionally, the study explored how the architecture responded to reduced training datasets.
Even when the data was drastically reduced to 10% of its original size, the learned-context networks
maintained competitive performance, outperforming other models in most cases. This robustness
makes the architecture highly suitable for practical applications where data availability may be
limited.

The research also highlighted the architecture's potential for visualizing and interpreting task
parameters. For example, in datasets related to health metrics like obesity or height, the task
parameters aligned closely with domain-specific properties, offering insights into the underlying
trends and patterns.

What sets this architecture apart is its adaptability and versatility. Unlike traditional multi-task
learning approaches, learned-context neural networks do not rely on pre-defined task encodings or
rigid structures. Instead, they dynamically adjust to the needs of each task, making them suitable for
a wide range of applications. The study emphasizes that while the architecture was evaluated using
fully connected neural networks, its principles could be extended to other designs, such as
convolutional or transformer-based networks, opening doors for further innovations.

In conclusion, the learned-context neural network emerges as a robust and practical solution
for multi-task learning challenges. Its ability to adapt to diverse tasks with minimal parameters,
combined with its theoretical soundness and empirical robustness, positions it as a promising tool in
both academic research and real-world applications. The study also paves the way for future
exploration, suggesting that this architecture could be further refined and extended to tackle even
more complex and dynamic learning problems.
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DEEP LEARNING FOR PARTIAL DISCHARGE DETECTION IN ELECTRICAL
MACHINES

Abstract: Testing for faults in the production line of automotive traction machines is crucial to guarantee their
expected lifespan. Repetitive partial discharges (PDs), triggered by anomalies in the insulation system, are a major cause
of premature failures in electrical machines, making reliable PD detection highly significant. This study introduces deep
learning (DL) techniques to enhance the differentiation of PD signals from background noise, outperforming
conventional amplitude-based PD detection methods used in production lines. A systematic procedure for data extraction
and labeling is outlined to ensure accurate datasets from various PD measurements. Additionally, the datasets are
enriched with low signal-to-noise ratio PD pulses through a specialized data augmentation technique. A comparative
analysis is performed on 13 different types of neural networks, including convolutional, recurrent, and fully connected
architectures, using diverse time-frequency representations of the input signals. For each of the 13 network
configurations, hyperparameters related to input transformation, network structure, and optimization solver are tuned to
ensure a fair and comprehensive evaluation. The study reveals that a two-dimensional convolutional neural network
combined with a continuous wavelet transform achieves the highest accuracy, approximately 99.76%, on a test dataset
consisting of PD signals from previously untested objects. All DL models examined in this study outperform the traditional
threshold-based PD classification approach. Notably, even for PD events with amplitudes close to the noise level, the
best-performing model achieves a detection rate of about 95%. However, without the proposed data augmentation
method, the DL models fail to reliably distinguish small PD pulses from background noise.

Keywords: Fault testing, Partial discharges, Deep learning, Data augmentation, Convolutional neural networks,
Time-frequency representations, Continuous wavelet transform, Signal-to-noise ratio.

End-of-line testing for traction machines is a critical step in ensuring the safety and quality of
electric vehicles during mass production. Even minor defects in the insulation system, such as small
cavities, can arise during manufacturing. When these weak spots are exposed to high voltage, they
may result in localized breakdowns of the insulation, known as partial discharges (PD). These events
not only accelerate the aging of the insulation but also lead to premature failures in electrical
machines. To mitigate these risks, comprehensive PD testing of stator windings is mandated for all
traction machines.

In this testing, surge voltages mimic real-world operational stresses caused by fast-switching
inverters. Sensors like ultra-high-frequency antennas and high-frequency current transformers are
employed to detect electromagnetic emissions and currents produced by PD events. However,
differentiating PD signals from background noise in industrial environments poses a challenge due
to the low signal-to-noise ratio (SNR). Achieving reliable PD detection is essential, both to ensure
the robustness of the tested stators and to minimize costly and unsustainable false rejections.
Conventional commercial PD detection systems typically use a straightforward amplitude-threshold
approach. However, more advanced techniques have emerged, leveraging either feature-based
machine learning or deep learning (DL). Unlike feature-based methods that rely on manual extraction
of key data characteristics, DL approaches autonomously learn to identify relevant features from raw
or transformed input data. This eliminates the need for expert-driven preprocessing and allows for
greater accuracy and adaptability. Despite the advancements, PD testing under the specific conditions
of non-sinusoidal voltages—required for traction machines—remains underexplored. EXxisting
methods often use data transformations such as phase-resolved patterns or frequency-domain
representations, but these are not well-suited for the high-speed surge voltages encountered in this
context. To address these challenges, this research introduces DL methodologies tailored for PD
classification in traction machines, emphasizing improved sensitivity and reduced false alarms. It also
highlights innovations such as systematic data labeling and augmentation techniques to enhance the
accuracy of small PD detection.

Neural Network Frameworks and Time-Frequency Transformations
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This research begins by exploring the foundational concepts underlying neural networks and
their specific implementations for the detection and classification of partial discharges (PD). Neural
networks like Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Fully Connected Neural Networks (FCNNs) play a crucial role in pattern recognition tasks. Each
network type is tailored for unique strengths in processing time-sequential or spatial data.

1. Convolutional Neural Networks (CNNs)

CNNs leverage a hierarchical structure where convolutional and pooling layers extract and
condense features from input data. By simulating the convolutional operation, feature maps are
created, allowing CNNs to detect spatial patterns effectively. The combination of layers enhances the
network’s ability to discern increasingly complex patterns, which is vital for classifying PD signals
amidst noise.

2. Recurrent Neural Networks (RNNSs)

Designed for sequence data, RNNs capture temporal dependencies. Variants like Long Short-
Term Memory (LSTM) networks address the challenges of vanishing gradients through gated
mechanisms that regulate the flow of information and gradients. Bidirectional LSTMs (BiLSTMs)
extend this by processing sequences in both forward and reverse directions, further enriching the
contextual understanding of data. Another variant, Gated Recurrent Units (GRUSs), simplifies the
structure by reducing the number of gates, making them computationally efficient while retaining
performance.

3. Time-Frequency Transformations

Time-frequency transformations, such as Short-Time Fourier Transform (STFT), Continuous
Wavelet Transform (CWT), and Stationary Wavelet Transform (SWT), are employed to analyze
signals in both time and frequency domains. These methods convert raw signals into representations
that highlight key characteristics of PD events:

STFT partitions a signal into overlapping segments to analyze localized frequency changes.

CWT decomposes a signal across scales using wavelet functions, preserving fine temporal
details.

SWT, unlike discrete wavelet transforms, avoids downsampling, ensuring consistency in
temporal alignment.

These transformations enable neural networks to process signal data in a manner that enhances
detection accuracy, especially for subtle PD events obscured by noise.

The study employs a sophisticated setup to test partial discharges (PDs) in automotive traction
machines. The testing focuses on three-phase hairpin stators, which are critical components in these
machines. Twelve stators were selected for the tests, with eight impregnated and four unimpregnated,
categorized based on their insulation thickness and power classification. The distinction in insulation
levels and power ratings allowed for a comprehensive analysis under varied operational conditions.

The experimental arrangement is meticulously designed. A surge generator (ST3810)
equipped with a 10 nF capacitor serves as the high-voltage source. This generator simulates real-life
stress by applying voltage surges to different phases of the stator windings. To capture the PD signals,
ultra-high frequency (UHF) broadband antennas, including a horn antenna and a logarithmic-periodic
antenna, are positioned strategically at both ends of the stator. The antennas are fine-tuned with analog
high-pass filters to isolate the PD signals from distortions caused by the high-voltage pulses.Signal
acquisition is performed using a state-of-the-art 12-bit digital oscilloscope operating at a sampling
frequency of 10 GHz. This ensures high-resolution data collection for each surge event. Additionally,
a high-voltage probe monitors the terminal voltage of the stators, adding another layer of precision to
the testing procedure.

To ensure accuracy, the testing process adheres to the standards outlined in DIN IEC/TS
61934. This involves progressively increasing the peak voltage and meticulously recording the
resulting antenna signals. The data, containing potential PD events, is subsequently processed in
MATLAB for detailed analysis. This rigorous setup not only enhances the reliability of PD detection
but also provides a robust foundation for generating datasets essential for further research in partial
discharge classification. By addressing the challenges posed by diverse insulation conditions and
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noise interferences, the setup ensures that the study’s findings are both comprehensive and applicable
to real-world scenarios. Creating a robust training dataset is critical for effectively applying neural
networks (NNSs) in the classification of partial discharges (PDs). However, due to the stochastic nature
and random timing of PD events, reliably labeling such signals is a challenging task. The following
methodology systematically addresses this issue by preprocessing raw data, isolating noise and PD
events, augmenting data for smaller PD pulses, and optionally transforming the time-domain data
into time-frequency representations.

Data Preprocessing

Signals captured by antennas undergo preprocessing to prepare them for reliable analysis. This
involves filtering out signals affected by clipping or saturation, as these may exceed the dynamic
range of the data acquisition system. A digital high-pass Chebyshev IIR filter with a passband
frequency of 200 MHz is applied to suppress distortions caused by high-voltage (HV) surges.
Following this, signals are normalized relative to their noise levels. Noise levels are determined using
data from the pre-HV surge interval, which excludes potential PD events. This normalization ensures
a consistent thresholding process for subsequent PD extraction.

Noise Extraction

The interval preceding the HV surge serves as a noise-only segment, providing a clean dataset
for background noise analysis. By dividing this segment into smaller snippets of a specified length
(e.g., 400 samples), a representative noise dataset is created. These snippets, devoid of PD events,
serve as benchmarks to distinguish background noise from actual PD pulses.

PD Extraction

To reliably extract PD events from the data, only signals surpassing a specific signal-to-noise
ratio (SNR) threshold (e.g., SNR > 4) are labeled as PD. A window of data surrounding the identified
peak is extracted and labeled. This process is repeated with random shifts in window placement to
ensure robustness in model training, enabling the neural network to identify PD pulses even when
they are not perfectly centered in the analysis window.

Dataset Augmentation

The NN's ability to detect low-SNR PD events is enhanced through dataset augmentation. PD
pulses are scaled down to various target SNR levels and overlaid onto noise snippets. This
augmentation ensures the inclusion of weak PD signals in the training set, making the NN more adept
at distinguishing subtle PD events from noise. By varying target SNRs across a range (e.g., 0.9 to 4),
the augmented dataset captures a wide spectrum of PD characteristics.

Dataset Overview

The datasets are carefully balanced to avoid class bias by randomly discarding excess samples
from overrepresented categories. Separate datasets are designated for training, validation, and testing,
with some exclusively reserved for evaluating generalization on unseen data. Additionally, data
diversity is increased by incorporating signals from different antennas, stator configurations, and HV
curve forms.

Data Transformation

To explore alternative input formats, time-frequency transformations are applied to the
datasets. Techniques such as Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT),
Continuous Wavelet Transform (CWT), and Stationary Wavelet Transform (SWT) are used. These
methods provide additional insights by representing PD events in both time and frequency domains.
The transformed data is then used as input for further analysis, enabling comparisons of classification
performance across different representation methods.

This systematic process of data generation and transformation ensures that the NN models are
trained on a comprehensive and representative dataset, optimizing their ability to accurately detect
and classify PD events.

In this research, the process of network and hyperparameter tuning plays a pivotal role in
optimizing the classification performance of neural networks for partial discharge (PD) detection.
Initially, specific parameters such as batch size and solver type were assessed to identify their impact
on training outcomes. This initial optimization revealed that different solvers, such as stochastic

166



gradient descent with momentum (SGDM) and adaptive moment estimation (ADAM), influenced
performance based on the network type. For example, SGDM demonstrated superior results for
certain convolutional neural networks (CNNs), whereas ADAM performed better for recurrent neural
networks (RNNSs) like LSTM and GRU. The next phase involved refining input transformations and
network architectures. This step sought to balance computational efficiency with model complexity.
Convolutional layers, known for their localized feature extraction capabilities, were configured with
varying kernel sizes and layer depths. These configurations allowed the researchers to evaluate the
trade-offs between network depth, the number of feature maps, and overall model accuracy. For
recurrent networks, the number of layers and hidden units was adjusted to identify trends in
performance improvements without overfitting.

A comprehensive comparison of 13 network configurations combined with input transforms
such as Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), and Continuous
Wavelet Transform (CWT) was conducted. Among these, the two-dimensional CNNs with CWT
input consistently achieved the highest classification accuracy. The researchers optimized
hyperparameters, including the learning rate, using Bayesian optimization to ensure robust
performance across different datasets. The findings also highlighted the importance of preprocessing
steps such as logarithmic transformations for specific input types like CWT. Additionally, applying
data augmentation techniques significantly enhanced the network’s ability to detect low-amplitude
PD pulses, which are often obscured by background noise. Ultimately, the research demonstrated that
carefully tuned CNN architectures could achieve detection accuracies exceeding 99%, even for
challenging datasets. This marks a substantial improvement over traditional threshold-based PD
detection methods, showcasing the potential of deep learning for improving reliability and precision
in electrical machine diagnostics.

The study culminates in an extensive comparison of various deep learning models, designed
to classify partial discharge (PD) signals with remarkable precision. Leveraging optimized
hyperparameters, the researchers trained these models on a carefully curated dataset (Trl) and
validated their performance on unseen data (Te2). The overarching goal was clear: to push the
boundaries of PD detection, surpassing traditional threshold-based methods in both accuracy and
robustness. As the models were put to the test, the 2D Convolutional Neural Networks (2DCNNSs)
emerged as clear frontrunners. When paired with Continuous Wavelet Transform (CWT) or Short-
Time Fourier Transform (STFT) input data, these networks achieved an impressive classification
accuracy of nearly 99.75%. This level of precision was consistent across training, validation, and
generalization datasets, proving the robustness and adaptability of the 2DCNNs. Interestingly, while
other models like Gated Recurrent Units (GRU) and Bidirectional Long Short-Term Memory
networks (BiLSTM) demonstrated strong performance, they slightly lagged behind the 2DCNNSs.
Notably, 1D Convolutional Neural Networks (LDCNNSs) also performed admirably, particularly when
working directly with raw data or utilizing Stationary Wavelet Transform (SWT) input. However,
when FFT-transformed data was used, the accuracy dropped slightly, highlighting the importance of
input transformation in maximizing model potential. The findings went beyond mere accuracy. A
deep dive into the Receiver Operating Characteristics (ROC) of the best-performing models revealed
exceptional true positive rates (TPR) above 99.5%, coupled with false positive rates (FPR) as low as
0.14%. These metrics underscore the reliability of the deep learning approaches in distinguishing PD
events from noise—a critical factor in industrial settings where safety and cost-efficiency are
paramount.

What’s even more fascinating is how these advanced models fared against conventional
threshold-based methods. While traditional techniques struggled with low signal-to-noise ratio (SNR)
scenarios, the 2DCNNs maintained a detection rate exceeding 94% even for PD signals barely
distinguishable from background noise. In contrast, threshold-based classifiers were prone to higher
false rejection rates or lower detection accuracy, depending on the chosen sensitivity threshold. This
study doesn’t just highlight the superiority of deep learning over traditional methods—it paves the
way for practical applications in industrial environments. By addressing challenges like noise
interference and signal variability, these models hold the promise of enhancing production line
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efficiency while ensuring the reliability of automotive traction machines. The 2DCNNSs, in particular,
stand out as a beacon of innovation, combining computational efficiency with unparalleled accuracy.

In the context of large-scale production of electrical machines, the importance of partial

discharge (PD) testing has been emphasized as a critical step for ensuring the expected lifespan of
automotive components. Traditionally, PD detection methods in production lines rely on amplitude
threshold-based decisions as specified by DIN IEC/TS 61934. However, these methods struggle to
distinguish PD signals with low signal-to-noise ratios (SNR) from background noise, leading to
potential inaccuracies in classification.

This research offers a comprehensive solution by exploring 13 neural network (NN)
architectures, including fully connected, convolutional, and recurrent networks, to determine the most
effective deep learning (DL) approach for PD classification. These networks are enhanced by
employing optional time-frequency transformations of input signals to improve their ability to
differentiate between PD and noise. The study introduces a systematic methodology for data
extraction, labeling, and augmentation, which significantly contributes to the quality and robustness
of the training datasets. This process includes the generation of small PD pulses to ensure the models
can accurately detect even subtle PD signals. Additionally, a meticulous hyperparameter optimization
process was conducted, addressing factors such as batch size, solver selection, and learning rate, to
refine network performance. The evaluation, carried out on datasets from previously unused test
objects, revealed that two-dimensional convolutional neural networks (2DCNNSs) utilizing short-time
Fourier transforms (STFT) or continuous wavelet transforms (CWT) demonstrated superior accuracy,
achieving approximately 99.75%. The 2DCNNs incorporate four convolutional layers and two fully
connected layers in their classification head, trained with a stochastic gradient descent with
momentum (SGDM) solver and a batch size of 16. Similarly, models like GRU and BiLSTM with
stationary wavelet transform (SWT) inputs, along with 1DCNNSs using raw data, performed almost
as well, with accuracy differences of less than 0.1% compared to the 2DCNNs. The study also
underscores the efficacy of the proposed data augmentation technique, which enables NNs to
recognize small PD pulses more effectively. For instance, detection rates for signals with SNRs
between 0.9 and 1 increased from 27% to 95% when data augmentation was applied. Furthermore,
analysis through ROC curves demonstrated that all the investigated DL models surpassed traditional
amplitude-based PD detection by achieving higher true positive rates (TPR) and lower false positive
rates (FPR). This improvement directly contributes to enhanced product reliability and reduced false
rejections in manufacturing.

Ultimately, the research highlights the potential of DL models to generalize across diverse PD
signal types and noise conditions, paving the way for their integration into real-time production line
applications. Despite the computational demands and the interpretability challenges associated with
DL algorithms, the proposed approach marks a significant advancement in PD testing methodologies.
The study concludes by suggesting further exploration into lightweight and advanced neural network
architectures to optimize computational efficiency and expand application scopes.
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Abstract: This study introduces a novel approach to identifying technological opportunities for advanced
technologies by analyzing information extracted from academic literature. These opportunities are framed as potential
business applications of technologies in novel, untested domains, such as industries or business processes that have yet
to be explored. Unlike traditional methods that rely on alternative datasets, this approach emphasizes the value of
leveraging emerging practices documented in scientific publications. The proposed methodology translates business
cases described in research articles into a structured triad: technology, industry, and process, and evaluates their impact
on business performance. From an extensive review of 33,285 papers, 14,739 distinct triads were identified. Using this
dataset, an artificial neural network was developed to predict the potential impact of yet-to-be-tested combinations of
technology, industry, and process. The methodology was applied to 11 advanced technologies, including 3D printing,
artificial intelligence, blockchain, high-performance computing, digital applications, geo-spatial technologies, immersive
environments, the Internet of Things, open and crowd-based platforms, proximity technologies, and robotics. For each
technology, a "technological opportunity map" was created to pinpoint optimal untapped areas for future applications.
Furthermore, the method differentiates between combinations with high and low confidence in expected impact, enabling
businesses to prioritize the most promising opportunities. The paper concludes with a discussion on the implications of
this methodology for both industry practitioners and academic research.

Keywords: technological opportunities, advanced technologies, business applications, literature analysis,
neural networks, technology-industry-process triad, opportunity mapping, emerging practices.

Introduction.

Technological opportunities represent the untapped potential for advancing industries,
markets, and products. Exploring such opportunities is a strategic priority for companies seeking
long-term growth. By identifying and analyzing these opportunities, businesses can position
themselves at the forefront of innovation, ensuring they remain competitive in an ever-changing
landscape. Historically, companies have relied on systematic methods to predict and leverage
technological trends. These include qualitative techniques like expert consultations and scenario
planning, as well as quantitative methods utilizing patent data. While patents offer valuable insights
into technological progress, they have limitations, particularly in the early stages of technological
development, when opportunities often remain undefined. Moreover, patents focus on applied
outcomes, potentially overlooking the foundational scientific knowledge that frequently drives
innovation.

In contrast, academic literature offers a rich repository of emerging practices and theoretical
advancements. Scientific research often precedes technological application, providing a unique
vantage point for identifying nascent opportunities. This study leverages the potential of academic
publications to bridge the gap between scientific exploration and business application. By focusing
on case studies documented in peer-reviewed journals, the research creates a structured framework
for identifying and evaluating the intersection of technologies, industries, and processes. Recognizing
the growing influence of artificial intelligence and big data, this methodology integrates machine
learning techniques to predict the impact of untested combinations. Through a detailed analysis of
existing triads and their business implications, the study enables companies to make informed
decisions about where to focus their efforts and investments. This narrative not only highlights the
importance of embracing innovative approaches to technology forecasting but also underscores the
transformative potential of using literature-based datasets. By aligning academic insights with
practical applications, the study provides a roadmap for navigating the complex and dynamic
landscape of technological advancement.

Understanding and harnessing technological opportunities is essential for fostering
innovation. The process of identifying such opportunities involves analyzing how technological
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advancements can reshape industries, businesses, and markets. However, this endeavor is often
hindered by a lack of comprehensive information, especially during the early stages of technological
development. When technologies are in their infancy, limited data restricts the ability to predict
growth trajectories, apply curve-fitting techniques, or use stochastic models to anticipate future
trends. This gap creates a significant divide between scientific exploration and the practicalities of
commercialization and production.

Emerging technologies often face uncertainty regarding their developmental paths and
potential commercial applications. Researchers, therefore, prioritize uncovering the most promising
technological areas, guiding investments in specific companies, industries, or markets. Importantly,
this exploration isn’t limited to new technologies. Established technologies, even those beyond their
early development stages, can also hold untapped potential. For this reason, the methodology
described in this study was applied to 11 advanced technologies across varying phases of evolution.
The analysis of technological opportunities benefits greatly from strategic intelligence and forward-
looking assessment tools. These instruments enable decision-makers to chart pathways and evaluate
success potentials. By anticipating emerging technologies and products, such assessments not only
highlight innovations yet to be developed but also reveal new markets for existing technologies. This
approach, broadly termed as "technological opportunity analysis," incorporates related concepts such
as convergence analysis, vacant technology forecasting, and identification of emerging product or
service opportunities. A key aspect of convergence analysis is its focus on the intersection of existing
technological fields, where new inventions often arise. This dynamic evolution of technologies
emphasizes the transformative potential of overlap between distinct domains, offering avenues for
innovative applications in industries previously unlinked. Similarly, vacant technology analysis uses
tools like maps or matrices to visually identify gaps in current technological implementations. These
visualizations are instrumental in predicting potential connections between unassociated fields and
directing efforts toward unexplored opportunities. Emerging and promising technologies,
characterized by novelty, rapid growth, and transformational potential, are vital to this discourse.
Such innovations often possess untapped market potential and can redefine industries. Accurately
forecasting their effects before widespread adoption is critical, as uninformed investments carry
significant risks. Researchers rely on this predictive capability to align decisions with the anticipated
trajectories of technological progress. In parallel, identifying opportunities for products or services
that align with technological advancements plays a foundational role in innovation. Such efforts guide
the early stages of product or service development, optimizing business processes or extending
product ranges to meet emerging market demands. Technological opportunity analysis can adopt
either qualitative or quantitative methodologies. Qualitative methods, such as Delphi surveys or
scenario planning, leverage expert insights but often suffer from subjectivity, time constraints, and
limited scalability to specific industries or markets. Conversely, quantitative approaches rely on
structured data from patents and scientific literature. Advances in artificial intelligence, machine
learning, and natural language processing have enabled the analysis of large datasets, uncovering
patterns and correlations that human experts might overlook. Patents have traditionally been the
primary resource for such analysis, offering structured and standardized data. However, they have
limitations, such as delayed availability, reliance on historical trends, and a narrow focus on existing
innovations. In contrast, academic papers provide richer contextual insights, especially regarding new
technologies in nascent stages. These publications often showcase the theoretical and practical
implications of innovations, offering a broader perspective than patents. The strengths of academic
literature lie in its coverage of diverse industries, detailed case studies, and emphasis on novel
applications. By manually analyzing such papers, researchers can extract valuable insights into
emerging practices, enabling a more nuanced exploration of technological opportunities. Although
time-intensive, this approach mitigates the shortcomings of automated techniques, which often
overlook deeper content within the body of scholarly works.

The methodology is organized into three main phases, each building upon the other to
systematically uncover technological opportunities using cutting-edge technologies and academic
research as a foundation.
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In the first phase, researchers construct a dataset of “emerging practices” by conducting a
thorough manual analysis of academic papers. These practices are categorized into triads consisting
of technology, industry, and process, along with the expected impact on business performance. The
meticulous analysis focuses on extracting detailed examples of how technologies have been
implemented in specific contexts and the associated benefits. The aim here is to capture
comprehensive insights into innovative applications from academic literature, ensuring that the
dataset is rich with nuanced data.

The second phase utilizes this dataset to train an artificial neural network. By leveraging the
triads as input, the model identifies patterns and relationships between technology, industry, and
process, predicting their potential impact. The training process incorporates rigorous validation steps
to ensure the model's reliability and accuracy. The network's task is to extrapolate the potential effects
of combinations that have not yet been observed, essentially forecasting new opportunities for
technological applications.

In the final phase, the trained neural network is deployed to assess untested combinations of
technology, industry, and process. Each combination is analyzed for its predicted impact, categorized
as either market-oriented (e.g., revenue growth or customer satisfaction) or organizational (e.g., cost
savings or efficiency improvements). To provide actionable insights, the methodology introduces a
confidence threshold for predictions, highlighting the most reliable opportunities while flagging those
with higher uncertainty. Results are visualized through "opportunity maps,” which graphically
represent promising areas for future exploration, offering a clear and practical guide for businesses
and researchers alike. The methodology is robustly tested across 11 advanced technologies, ranging
from artificial intelligence and blockchain to 3D printing and robotics. By focusing on emerging
practices and employing artificial neural networks, the approach bridges the gap between theoretical
exploration and practical application, making it an invaluable tool for identifying high-impact
technological opportunities.

Out of these, only 8,406 papers were deemed useful for the analysis, as the remainder either
lacked relevant data on emerging practices or were inaccessible online. These selected papers
facilitated the identification of 14,739 practices, encapsulated as combinations of technology,
industry, and business processes. Interestingly, certain practices required the incorporation of
multiple combinations to accurately capture their application, as they spanned various industries or
processes. A diverse range of journals contributed to this rich dataset, including prominent
publications like Annals of Operations Research, Computers and Operations Research, and European
Journal of Operational Research. These sources demonstrated substantial variation in their focus on
emerging practices, revealing trends in academic interest and technological applications. The
artificial neural network, trained on the dataset, provided key insights into these combinations.
Utilizing categorical variables such as technologies, industries, and processes, the network effectively
predicted the potential market and organizational impacts of untested combinations. The neural
network’s architecture featured a single hidden layer optimized through SPSS, ensuring robust
predictions tailored to real-world applications.

Across the evaluated technologies, 71.35% of potential combinations remain unexplored,
signaling a significant opportunity for innovation. These vacant combinations, mapped through
technology-opportunity frameworks, highlight promising areas where businesses can pioneer new
applications. For instance, technologies like 3D printing exhibited higher shares of vacant
opportunities, suggesting untapped potential in industries yet to adopt these innovations. Furthermore,
the study underscored the pivotal role of processes in shaping outcomes. Sensitivity analysis revealed
that process variables had the highest normalized importance, followed by industry and technology.
This finding highlights the critical influence of how technologies are integrated into operational
contexts to drive organizational and market performance. The methodology employed not only
enhances our understanding of emerging practices but also provides actionable insights. By focusing
on combinations with confident predictions of success, businesses can strategically prioritize areas
with the greatest potential impact. This structured approach ensures that investments in new
technologies are both informed and targeted, fostering a path toward transformative innovation.
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The conclusion section of the paper outlines the innovative methodology proposed for
uncovering technological opportunities using insights derived from scientific literature and artificial
neural networks. This approach demonstrates significant predictive power, as validated through
testing across 11 cutting-edge technologies. However, the methodology has its limitations, primarily
tied to the nature of the dataset and the reliance on manual content analysis. This time-intensive
process stems from the substantial volume of scientific literature published annually and the varying
relevance of these works to specific technological applications. Furthermore, the absence of certain
applications in the database might lead to an overestimation of potential combinations. As new
technologies emerge, integrating them into the existing classification and retraining models from
scratch become necessary, posing additional challenges. The study emphasizes that scientific
literature serves as a valuable repository for identifying emerging practices, allowing for the
development of tools that uncover technological opportunities. Future research should focus on
exploring individual technologies in greater depth, as listed in the supplementary tables, to refine the
methodology further. Continuous monitoring of scientific literature is essential to incorporate newly
emerging technologies and assess their commercial viability and developmental progress. To mitigate
the challenges of manual analysis, efforts are underway to integrate advanced natural language
processing tools that can pre-filter relevant abstracts and prioritize the most promising papers. This
automation aims to significantly reduce the time required for analysis. Moreover, with advancements
in artificial intelligence, it will soon be feasible to automate the extraction of emerging practices
directly from scientific texts, streamlining the process and enabling quicker identification of
technological opportunities.

In summary, while the methodology outlined is robust and offers substantial insights, its
application can be further enhanced through ongoing technological advancements and
methodological refinements. This iterative process ensures the approach remains relevant and capable
of addressing the dynamic landscape of technological innovation.
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GAIT-BASED EMOTION RECOGNITION WITH PRIVACY PRESERVATION

Abstract: Recognition of emotions based on gait has attracted growing attention due to its diverse applications
in areas such as healthcare, social interaction analysis, surveillance systems, and smart technologies. Unlike other
biometric traits, gait offers distinct advantages, including the ability to perform remote identification and maintain
reliable performance even in unstructured environments. Additionally, analyzing gait patterns can provide meaningful
insights into an individual's emotional condition. This study introduces the “Walk-as-you-Feel” (WayF) framework, an
innovative method for emotion recognition from gait that prioritizes user privacy by avoiding reliance on facial
information. To overcome challenges associated with limited and imbalanced datasets, the approach incorporates a
tailored balancing technique designed for deep learning models. Advanced architectures like Adapted Inception-v3 and
EfficientNet are utilized for feature extraction, while emotion classification is achieved through Gated Recurrent Units
(GRUs) and a Transformer Encoder. The experimental evaluation highlights the effectiveness of WayF, achieving an
average recognition accuracy of approximately 77% in its optimal configuration. Furthermore, when excluding neutral
emotions, the system attains an impressive accuracy of 83.3%, surpassing many methods that incorporate facial features.

Keywords: gait, emotion recognition, biometric, privacy, deep learning, feature extraction, grus, transformers

Introduction.

Understanding human emotions through various recognition techniques has become an
increasingly significant topic across numerous domains. Emotions play a pivotal role in enhancing
human interaction, influencing decision-making, and shaping behavioral patterns. Fields such as
healthcare, social communication, surveillance, and advanced technology applications have
particularly benefitted from advancements in emotion recognition. Researchers have explored
multiple biometric approaches to detect emotional states, including speech analysis, facial expression
recognition, EEG signals, and gait patterns. Among these, gait analysis has emerged as a distinct and
promising method for emotion recognition.

Gait, fundamentally defined as the pattern of an individual's movement during walking,
transcends its basic role as a means of mobility. It serves as a unique identifier, capable of
distinguishing individuals based on their specific walking styles. This biometric trait offers
remarkable advantages over traditional methods, such as remote identification, which does not require
physical proximity, and effectiveness under diverse, uncontrolled conditions. Gait recognition
systems can operate efficiently even with low-resolution data and do not rely on the active
cooperation of individuals. This makes gait-based identification a practical choice for real-world
scenarios, where conventional techniques like facial recognition might fail due to obscured or masked
features.

Beyond identification, gait analysis provides profound insights into emotional states, bridging
the gap between physical behavior and affective conditions. Variations in gait patterns are known to
correlate with different emotional states, making it possible to infer an individual's mood or
psychological disposition through their walking behavior. This interplay between gait dynamics and
emotions introduces innovative opportunities for emotion recognition technologies, particularly in
privacy-sensitive applications.

Unlike facial recognition, which directly captures and interprets expressive features, gait
analysis offers a less intrusive alternative, safeguarding personal privacy while delivering actionable
insights. This unique aspect is particularly relevant in environments where individuals may
intentionally mask their faces or where privacy concerns limit the use of facial-based recognition
systems. By focusing solely on gait patterns, researchers aim to eliminate biases and limitations
associated with face-dependent methods, paving the way for broader adoption of emotion recognition
systems in surveillance, healthcare monitoring, and beyond.
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Recent advancements in gait analysis have delved into optimizing feature extraction and
improving resilience against intra-class variations. Despite these developments, the field faces
challenges, particularly when excluding facial cues, which are traditionally strong indicators of
emotional states. Addressing these challenges requires innovative approaches that not only enhance
the accuracy of gait-based emotion recognition but also respect ethical considerations such as user
privacy.

In this context, the "Walk-as-you-Feel" (WayF) framework introduces a groundbreaking
solution. This novel approach leverages advanced deep learning architectures to analyze gait patterns
while deliberately excluding facial information. By prioritizing privacy-preserving mechanisms, the
WayF framework broadens the scope of biometric applications, offering a robust method to decode
emotions solely from walking behavior. The research presents a multifaceted contribution, including
the development of a dataset balancing procedure to address limitations posed by small and uneven
data distributions, and the integration of cutting-edge feature extraction models like Inception-v3 and
EfficientNet, combined with Gated Recurrent Units (GRUs) and Transformer Encoders for
classification.

Through rigorous experimentation, the WayF framework demonstrates promising results,
achieving competitive accuracy levels even when benchmarked against state-of-the-art methods that
utilize facial cues. This work not only highlights the potential of gait as a standalone biometric for
emotion recognition but also underscores the importance of privacy-centric design in modern Al
systems.

Narrative Summary of Related Works

Emotion recognition plays a crucial role in various fields, such as psychology, healthcare,
communication, and technology, offering deeper insights into human experiences and improving
engagement. Among the methodologies for emotion recognition, two dominant approaches have
emerged: video-based analysis and skeleton-based analysis. Each provides unique advantages, with
video-based approaches capturing a broad range of emotional cues, including facial expressions,
while skeleton-based methods focus on key body movements, offering a more abstract yet privacy-
preserving perspective.

Video-Based Approaches

Recent advancements in video-based emotion recognition have leveraged gait analysis
alongside deep learning architectures. For instance, Bhattacharya et al. introduced a Bi-Modal Deep
Neural Network (BMDNN) that combines domain-specific discriminative features with deep latent
features, achieving state-of-the-art results on the Edinburgh Locomotion MoCap dataset. Similarly,
Yin et al. developed a MultiScale Adaptive Graph Convolution Network (MSAGCN) capable of
dynamically selecting spatial-temporal features, outperforming previous techniques in accuracy.
Another notable contribution by Chai et al. involved the use of multi-head pseudo-nodes to address
feature imbalance and enhance the global understanding of joint interactions. These approaches
highlight the potential of video-based methods to decode complex emotional states by analyzing a
range of visual cues.

Skeleton-Based Approaches

In the realm of skeleton-based emotion recognition, researchers have explored innovative
strategies to extract emotional insights from body movements. Karg et al. demonstrated the feasibility
of recognizing emotions through gait patterns by using dimensionality reduction techniques like
Principal Component Analysis (PCA) and achieving high accuracy with person-specific data. Venture
et al. extended this approach by analyzing joint angles derived from motion capture data, revealing
promising results in classifying emotions.

Crenn et al. introduced a method that combines body posture analysis with motion features,
employing a Support Vector Machine (SVM) classifier to distinguish emotional expressions
effectively. Expanding on this, the team later developed a system that computes spectral differences
between neutral and expressive motions, further refining the classification process. Similarly, Daoudi
et al. proposed analyzing temporal dynamics of skeleton joint movements in 3D space, utilizing
covariance matrices and Riemannian geometry for emotion classification.
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These works collectively emphasize the richness of gait and skeletal data in decoding
emotions, providing robust alternatives to traditional facial expression analysis. Each approach
contributes to advancing the field, highlighting unique challenges and opportunities for future
exploration in emotion recognition.

Methods

The methodology adopted in this study focuses on leveraging advanced deep learning
architectures to analyze gait patterns for emotion recognition, ensuring user privacy by excluding
facial cues.

Transformers-Encoder

Initially introduced in the seminal paper “Attention Is All You Need” (Vaswani et al., 2017),
Transformers have revolutionized sequence data analysis by overcoming limitations of Recurrent
Neural Networks (RNNs). Their self-attention mechanism enables them to identify relationships
across distant elements within a sequence, making them particularly well-suited for processing
variable-length input data. For this study, only the encoder component of the Transformer architecture
is utilized, as it efficiently extracts discriminative features for classification tasks. The use of
Transformers in the "Walk-as-you-Feel" (WayF) framework exemplifies an innovative approach in
computer vision by exploring their application beyond natural language processing.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are employed for spatial feature extraction. Two
architectures—EfficientNetV2-L and Inception-v3—are utilized in different pipeline configurations.
EfficientNetV2-L, known for its superior design integrating progressive learning and advanced
architectural modifications, excels in performance when paired with Transformers-Encoder.
Inception-v3, which emphasizes efficient parameter usage and advanced factoring strategies, shows
robust compatibility with RNN-GRU networks.

Gated Recurrent Units (GRUs)

GRUEs, a variant of recurrent neural networks, are selected for their efficiency in handling
sequential data while mitigating issues like vanishing gradients. With a simpler architecture compared
to LSTMs, GRUs utilize Update and Reset gates to manage information flow and ensure robust
temporal feature processing. This makes them a reliable choice for tasks requiring detailed sequential
analysis, such as gait-based emotion classification.

MediaPipe Pose Landmark Detection

For landmark extraction, the MediaPipe library is employed to predict 33 body points from
video frames. By excluding facial features, the framework emphasizes body motion, ensuring privacy
preservation. The extracted body landmarks serve as inputs for the deep learning pipelines.

Pipeline Design

Two distinct pipelines are developed:

1. EfficientNetV2-L + Transformers-Encoder: This pipeline excels in capturing temporal
features through the Transformer’s attention mechanism, particularly effective for neutral and
sad emotions.

2. Inception-v3 + RNN-GRU: Designed to process sequential data, this configuration shows
strong performance for happy and angry emotions.

Both pipelines involve pre-processing the video frames into feature vectors, which are
subsequently classified by either the GRU or Transformer network. The selection of 240 frames per
video ensures sufficient data for capturing intricate gait patterns.

Experimental Protocol: Narrative Overview

The experimental design aimed to evaluate the feasibility of emotion recognition using gait
data while maintaining user privacy. The study utilized the E-Walk dataset, chosen specifically for
its absence of facial information. This unique dataset ensured the focus remained solely on gait-based
analysis without relying on facial features, a crucial aspect of preserving privacy.

Dataset Characteristics and Preprocessing

The E-Walk dataset includes 84 video clips featuring various walking styles. Each video was
rated by multiple participants on a scale of 1 to 5 for emotions such as happiness, sadness, anger, and
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neutrality. The scoring system averaged these ratings to classify each video by the dominant emotion.
A critical preprocessing step involved extracting 240 frames from each video using the OpenCV
library, resulting in a total of 20,160 frames. Subsequently, the MediaPipe Pose Landmark Detection
library was employed to extract body landmarks, generating gait masks that represented body
movements. This process excluded facial landmarks to ensure privacy and minimize the potential for
misclassification caused by facial occlusion.

Data Balancing Strategies

A major challenge addressed in this study was the imbalance inherent in the dataset, with
certain emotions being overrepresented. To overcome this, the researchers employed both under-
sampling and over-sampling techniques. Under-sampling reduced the dominance of overrepresented
classes, while over-sampling replicated instances of underrepresented emotions. This balancing
ensured that each emotional category contributed equally during training, enhancing the model's
robustness.

Implementation of Pipelines

Two distinct machine learning pipelines were developed for the analysis:

1. CNN + Transformers-Encoder Pipeline: This pipeline integrated EfficientNetVV2-L as the
convolutional neural network (CNN) for feature extraction, paired with Transformers-
Encoder blocks for classification. The Transformer's auto-attention mechanism and internal
masking provided nuanced temporal analysis of gait patterns.

2. CNN + RNN-GRU Pipeline: This second pipeline employed the Inception-v3 network for
CNN-based feature extraction, followed by classification using Gated Recurrent Units
(GRUs). The GRU architecture was chosen for its simplicity and effectiveness in handling
sequential data.

Each pipeline processed the feature vectors generated by the CNN, enabling the downstream
classification algorithms to discern subtle temporal correlations.

Experimental Findings

The experiments were conducted under two conditions: balanced and unbalanced datasets. In
balanced setups, data was divided into training and testing sets in an 80:20 ratio. This configuration
allowed for a rigorous evaluation of the models while maintaining sufficient training samples.
Notably, the CNN + Transformers-Encoder pipeline demonstrated superior performance for certain
emotions, such as neutrality, while the CNN + RNN-GRU pipeline excelled in recognizing happiness.
Together, these pipelines highlighted complementary strengths.

When the neutral emotion was excluded—due to its inherent ambiguity in psychological
contexts—the best-performing configuration achieved an accuracy of 83.3%, underscoring the
framework's potential.

Conclusions
This research introduces the innovative "Walk-as-you-Feel" (WayF) framework, pioneering
an approach for recognizing emotions through gait analysis, prioritizing privacy by excluding facial
features. By leveraging body movement data, the method focuses on sequences derived from skeletal
motion. To overcome the inherent challenges of small and unbalanced datasets often encountered in
emotion recognition tasks, this study incorporates tailored balancing techniques optimized for deep
learning systems. The architectural foundation of WayF is built on adapting state-of-the-art
convolutional neural networks (CNNs) such as Inception-v3 and EfficientNet, which serve as feature
extractors. These features are then processed by advanced classifiers like Gated Recurrent Units
(GRU) and Transformers-Encoder models. Through rigorous experimentation, the WayF framework
achieved competitive results, with an average accuracy of 77%, a figure that rivals existing methods
which incorporate facial data. Significantly, when the "neutral” emotional state is omitted, the
accuracy improves to 83.3%. These findings underscore the potential of gait-based emotion
recognition, particularly in scenarios where facial cues are unavailable or intentionally excluded to
ensure user privacy. The reliance on skeletal data expands the usability of this method in diverse
applications, from healthcare to surveillance, while maintaining ethical considerations regarding
personal data.
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Future research directions include exploring hybrid datasets, such as the partial incorporation
of synthetic data like E-Gait, which could provide broader benchmarks for model training. Such
endeavors would necessitate modifications to ensure the dataset aligns with WayF’s emphasis on
non-facial analysis. Additionally, conducting ablation studies on the impact of individual emotions,
informed by E-Walk's detailed emotion scoring, could provide deeper insights into the emotional
nuances of gait. This shift from a purely classification approach to potentially integrating regression
modeling could enhance the framework's predictive capabilities. Further expansion of the research
could involve integrating multimodal data, such as audio or physiological signals, which may provide
complementary insights into emotional states. Evaluating the system's real-time performance in
dynamic environments will also be critical in determining its practical viability and robustness.
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EVOLUTIONARY SWARM FORMATION FOR AUTONOMOUS ROBOTS

Abstract: Autonomous robot swarms have emerged as a promising solution for various space and aerospace
applications due to their adaptability, resilience, and ability to self-organize. These systems are particularly useful in
tasks such as asteroid surveillance, convoy protection, and counter-drone operations, which require maintaining stable
formations around a central target. However, the challenge lies in managing swarms with varying robot numbers and
diverse initial conditions. In this research, we introduce an innovative method for the self-organization of autonomous
robotic swarms, where individual robot movements are guided solely by relative positional data (range and bearing)
derived from radio beacons. To optimize swarm behavior, we employ an evolutionary algorithm to determine optimal
parameters, such as speed and attraction/repulsion forces, ensuring robust formation stability across different initial
setups and failure scenarios. We tested this approach through realistic simulations across six scenarios, involving swarms
of 3, 5, 10, 15, 20, and 30 robots. The results demonstrated the effectiveness of the optimized configurations, achieving
stable circular formations in all 420 test scenarios. Additionally, we validated the method using physical experiments
with E-Puck2 robots, confirming the swarm’s ability to self-organize around a central target and maintain formation
despite robot failures, achieving consistent success in all trials.

Keywords: autonomous robots, robot swarms, self-organization, evolutionary algorithms, swarm optimization,
stable formations, aerospace applications, robot resilience

Introduction.

Autonomous robot swarms have emerged as a viable solution for space and aerospace
applications due to their adaptability, robustness, and self-organizing abilities. These swarms are
particularly useful in tasks like asteroid monitoring, convoy protection, and counter-drone operations,
where stable formations around a central target are essential. However, managing varying swarm
sizes and diverse initial conditions presents a significant challenge.

In this research, we propose a novel method for organizing autonomous robot swarms, where
each robot’s movement is determined solely by its relative position, measured through range and
bearing from radio beacons. We employ an evolutionary algorithm to optimize the swarm’s
parameters—such as speed and attraction/repulsion forces—to ensure stable formations under various
conditions, including different initial setups and failure rates. The method is tested using realistic
simulations with swarms of varying sizes (3, 5, 10, 15, 20, and 30 robots), with the optimized
configurations consistently achieving circular formations across multiple test scenarios. Additionally,
real E-Puck2 robots were used for validation, demonstrating the swarm's ability to self-organize and
maintain stability despite robot failures.

Optimization Approach and Methodology

In this study, we present an innovative method for the self-organization of autonomous robot
swarms, where the robots' movements are solely determined by their relative positions to each other.
These positions are measured through range and bearing data, which is obtained using their respective
radio beacons. This approach eliminates the need for central control or global positioning systems,
allowing the robots to coordinate efficiently without requiring extensive infrastructure.

To enhance the swarm’s ability to maintain robust formations under a variety of conditions,
we introduce an optimization strategy based on an evolutionary algorithm. The goal is to determine
the ideal parameters for the swarm, including the speed of movement and the forces of attraction and
repulsion between robots. These parameters are crucial for ensuring that the swarm can adapt to
different initial configurations, environmental conditions, and potential robot failures, while still
achieving stable and predictable formations.

The evolutionary algorithm is designed to explore the search space and identify the best values
for these parameters. By evaluating the fitness of different swarm configurations, the algorithm fine-
tunes the system to achieve the desired formation in the most efficient way possible. This method
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ensures that the swarm can operate effectively even in the presence of uncertainties or disturbances,
such as changes in the number of robots, their initial positions, or unexpected failures.

In essence, our approach provides a scalable and adaptive solution for organizing autonomous
robots into stable formations, while maintaining flexibility and resilience. The optimization process
ensures that the swarm can function optimally under a wide range of conditions, making it a highly
effective strategy for applications that require dynamic coordination, such as space exploration or
security operations.

In this research, we introduce an innovative method for the self-organization of autonomous
robot swarms, where the movement of each robot is determined solely by its relative position in the
swarm. This relative position is derived from range and bearing information obtained through their
respective radio beacons. The robots do not rely on an external control system or central coordination.
Instead, their movements are based on local interactions with neighboring robots, allowing the swarm
to collectively achieve the desired formation.

To further enhance the swarm's performance, we propose an optimization approach that uses
an evolutionary algorithm to calculate the optimal parameters necessary for maintaining robust
formations. These parameters include factors such as the robots' speed and the attraction/repulsion
forces between them. The goal is to find the most effective configuration that ensures the stability of
the swarm’s formation, even under varying initial conditions and in the presence of potential failures.
By optimizing these parameters, the swarm can adapt to different scenarios, maintaining its structure
and performance despite challenges such as robot malfunction or changes in the swarm size.

This approach addresses the complexity of managing autonomous robot swarms, where
factors like the number of robots, the starting conditions, and the potential for failure introduce
significant challenges. The proposed method aims to overcome these difficulties by providing a
solution that is both scalable and resilient. Through the optimization of swarm parameters, it is
possible to create stable and adaptable formations, even in dynamic environments where the robots
must rely on local information and interactions.

Unlike traditional methods that rely on centralized control, our approach allows each robot to
adjust its movement based solely on its relative position, which is determined through range and
bearing measurements obtained from radio beacons. The robots do not need to communicate with one
another directly or rely on complex algorithms; instead, they use simple local information to
coordinate their actions.

To ensure the formation remains stable and robust, we employ an evolutionary algorithm to
optimize key swarm parameters. These include the speed of each robot as well as the attraction and
repulsion forces between them. The goal is to maintain a stable, organized swarm that can adapt to
varying initial conditions and account for potential robot failures. This is particularly important as the
swarm must be resilient, even when some robots malfunction or become disconnected from the rest.
We tested this approach through a series of experiments that simulated six different scenarios,
with varying numbers of robots ranging from three to thirty. In total, 420 scenarios were run, and the
results were consistently successful. In every case, the swarm achieved the desired circular formation,
demonstrating the effectiveness and stability of the approach.

Finally, to validate the method in a real-world environment, we used physical robots,
specifically the E-Puck2 models, to conduct further experiments. These real-world tests confirmed
that the swarm was capable of self-organizing around a central point of interest. Additionally, the
swarm showed resilience to robot failure, as it continued to maintain its formation even when
individual robots failed, further proving the robustness of our approach.

In this section, we present a novel approach for optimizing the behavior of autonomous robot
swarms, focusing on their self-organization capabilities. The key innovation lies in how the robots
move: rather than relying on external commands or predefined paths, each robot’s movement is based
purely on its relative position to other robots in the swarm. This positional information is derived
from the range and bearing measurements, which are obtained through radio beacons. These relative
measurements allow the robots to coordinate their actions without needing a central controller,
mimicking natural swarming behaviors.
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To fine-tune the swarm's movement dynamics, we apply an optimization technique grounded
in evolutionary algorithms. This approach helps determine the ideal parameters for the swarm, such
as the speed of the robots and the forces of attraction and repulsion that dictate their interactions. By
optimizing these parameters, we aim to ensure the swarm can form and maintain stable and robust
formations, even in the face of changing initial conditions and potential robot failures.

The effectiveness of this method was tested through a series of realistic simulations. These
simulations featured various swarm sizes, ranging from three to thirty robots, across six distinct case
studies. Each scenario aimed to challenge the swarm’s ability to form stable circular formations under
different conditions. The results were promising: the optimized configurations consistently enabled
the swarm to achieve the desired formation in 420 test cases. The success of these simulations
demonstrated that the proposed method is resilient and effective, capable of achieving robust
performance even when faced with varied starting conditions.

Lastly, the research was extended to real-world testing using E-Puck?2 robots, which were used
to physically validate the swarm’s ability to self-organize. In these experiments, the robots
successfully formed stable circular formations around a central point of interest. Furthermore, the
swarm demonstrated impressive resilience, maintaining its formation even when individual robots
failed, confirming the robustness and reliability of the proposed self-organizing system.

Conclusion.

To ensure that the swarm achieves robust formations, we employ an optimization strategy
based on an evolutionary algorithm. This algorithm is used to calculate key parameters for the swarm,
such as speed and the forces of attraction and repulsion between the robots. By optimizing these
parameters, the swarm can maintain stable and efficient formations even when faced with varying
initial conditions or failure rates.

We tested this method through simulations designed to reflect real-world scenarios. These
simulations involved six different case studies, with the swarm size ranging from three to thirty
robots. The results from the simulations were promising, with the optimized configurations
consistently achieving stable circular formations across all 420 test scenarios. This success
demonstrated the robustness of our approach under various conditions.

Finally, we validated our method through practical experiments using real E-Puck2 robots.
The physical tests confirmed that the swarm could effectively self-organize around a central point of
interest, even when individual robots experienced failures. In every trial, the swarm was able to
maintain the desired circular formation, further supporting the reliability and resilience of the
proposed method.
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DEEP LEARNING FOR EX-TRATERRESTRIAL ROCK SEGMENTATION

Abstract: Bringing autonomy to edge devices is a crucial step in advancing space exploration. Among the many
tasks that autonomous vehicles can perform, detecting and segmenting rocks in onboard images of extraterrestrial
landscapes is pivotal for enabling safe navigation and avoiding collisions. To address this challenge, we propose an end-
to-end pipeline designed to develop and validate resource-efficient machine learning techniques tailored to this task,
offering significant flexibility. Deploying such models on edge devices involves numerous practical challenges, including
achieving memory and computational efficiency and ensuring robustness under varying image quality conditions. These
critical aspects are often neglected during the development of deep learning-based onboard systems. We demonstrate
that these considerations should be integral to the deployment process. Our extensive experimental analysis across
multiple benchmark datasets highlights the functional and non-functional capabilities of the models, both in full-precision
and in compressed formats via quantization, the latter achieving similar segmentation accuracy while reducing model
size by approximately 11 times. Furthermore, we illustrate that synthesized images can be effectively used to evaluate the
robustness of deep learning models under conditions mimicking onboard acquisition scenarios, where degraded image
quality can negatively impact the performance of models trained on clean, high-quality data.

Keywords: autonomy, edge devices, space exploration, rock segmentation, machine learning, robustness,
quantization, image quality

Exploration of space presents humanity with extraordinary challenges. The harshness of
extraterrestrial environments—marked by cosmic radiation, extreme temperatures, and the absence
of breathable air—necessitates the development of highly specialized vehicles like rovers. These
rovers are designed not just to survive but to perform a variety of critical tasks, such as terrain
analysis, collecting samples, testing mission equipment, and transmitting invaluable data back to
Earth.

However, the vast distances of space introduce a unique constraint: the time delay in radio
signal transmission makes real-time remote control impossible. As a result, these machines require a
significant degree of autonomy. While current rovers depend partially on commands from Earth,
transitioning to full autonomy promises to revolutionize their efficiency and effectiveness in fulfilling
mission objectives. Autonomous navigation, hazard detection, and power management are among the
essential capabilities that would enable rovers to adapt seamlessly to their environment.

Despite their potential, designing these systems for space exploration involves overcoming
stringent technical challenges. The onboard computers must operate under severe hardware
constraints, balancing limited processing power with optimal performance. To navigate these
limitations, advanced machine learning techniques have become indispensable. Unlike traditional
algorithms, machine learning models excel in capturing complex relationships within data, providing
a robust foundation for autonomous decision-making under uncertain conditions.

This work focuses on an essential aspect of rover autonomy: the detection and segmentation
of rocks from onboard images. This capability not only aids in collision avoidance but also facilitates
path planning and other critical functions. Leveraging recent advances in deep learning, we present
an innovative end-to-end pipeline tailored for resource-constrained edge devices. By addressing both
the functional and non-functional aspects of deploying these models in extraterrestrial conditions, we
aim to bridge the gap between theoretical advancements and practical implementation.

The integration of deep learning models into the hardware of rovers poses a series of unique
challenges. These models must not only provide accurate segmentation of rocks but also operate
efficiently within the severe computational and memory limitations of onboard devices. Achieving
this balance requires innovative solutions that optimize the size and performance of the models
without compromising their accuracy. To address these challenges, we introduce a systematic
approach that combines state-of-the-art machine learning techniques with advanced resource
optimization strategies.
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A critical aspect of our approach involves tailoring the models to the specific conditions of
extraterrestrial environments. Images captured by rover cameras are often affected by noise, varying
lighting conditions, and other factors that degrade their quality. Traditional models trained on clean,
high-resolution datasets may falter under such conditions. To ensure robustness, our pipeline
incorporates data-level simulations that mimic these real-world acquisition scenarios. By introducing
controlled noise, blur, and exposure variations during the training process, we enhance the ability of
our models to generalize across diverse environmental conditions.

In addition to ensuring robustness, we focus on compactness through post-training
quantization. This process reduces the size of the models significantly—often by an order of
magnitude—without a noticeable drop in performance. The resulting models are not only suitable for
deployment on memory-constrained devices but also exhibit faster inference times, which is crucial
for real-time applications like navigation and hazard avoidance.

Our extensive experimental evaluation spans multiple benchmark datasets, including both
synthetic and real-world images of extraterrestrial landscapes. These datasets capture the diversity of
conditions that rovers might encounter, from the barren expanses of the Moon to the rugged terrains
of Mars. By testing our models under a variety of scenarios, we demonstrate their adaptability,
precision, and efficiency. The results confirm that our pipeline offers a viable solution for integrating
deep learning-powered rock segmentation into the operational framework of space exploration
vehicles.

To promote transparency and reproducibility, we have made our entire implementation
publicly available. This allows other researchers to build upon our work, adapt our methods to
different applications, and further advance the field of autonomous systems for space exploration. As
we look to the future, we envision this pipeline serving as a foundational tool not only for rock
segmentation but also for a range of other onboard image analysis tasks.

In the broader context of space exploration, the implications of deploying such compact and
robust machine learning models are profound. As missions extend to more distant celestial bodies,
the autonomy of exploration vehicles will become increasingly critical. The ability to process data
onboard eliminates the dependency on continuous communication with ground control, significantly
reducing delays and enabling real-time decision-making. For example, a rover equipped with an
efficient segmentation model can identify and navigate around obstacles autonomously, ensuring
uninterrupted progress even in the absence of direct oversight.

The flexibility of our proposed pipeline extends beyond rock segmentation. By design, it
accommodates a variety of image analysis tasks, from identifying geological features to detecting
potential scientific interest points. The modular structure allows researchers to integrate their
preferred deep learning architectures, optimize them for edge devices, and test their robustness under
simulated extraterrestrial conditions. This versatility ensures that the pipeline can evolve alongside
advancements in both machine learning and rover technology.

One of the standout contributions of our work is the systematic quantification of both
functional and non-functional capabilities of the models. Metrics such as Dice similarity, inference
time, and memory footprint provide a comprehensive view of model performance, ensuring that the
selected algorithms meet the stringent requirements of onboard deployment. The inclusion of non-
functional metrics is especially critical in resource-constrained environments, where trade-offs
between accuracy and efficiency must be carefully managed.

Our results highlight the significant potential of post-training quantization as a compression
technique. Models that underwent this process maintained segmentation accuracy comparable to their
full-precision counterparts while achieving a reduction in size by a factor of 11. This reduction not
only facilitates deployment on edge devices but also opens up possibilities for multitasking, where
multiple models can operate simultaneously without overwhelming system resources.

Looking ahead, the deployment of these models in real-world missions will require further
refinements. Hardware-in-the-loop testing, where algorithms are evaluated on actual rover systems
or high-fidelity simulators, will be a crucial step. Additionally, integrating these models with other
subsystems, such as navigation and power management, will ensure a cohesive and efficient
operational framework.
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The insights gained from this study provide a roadmap for future developments in autonomous
systems for space exploration. By addressing the dual challenges of robustness and efficiency, our
work paves the way for more ambitious missions that push the boundaries of what is possible in
remote and hostile environments. As exploration vehicles become increasingly intelligent and
capable, the dream of unlocking the mysteries of distant worlds edges closer to reality.

The outcomes of this study also underscore the importance of developing standardized
evaluation frameworks for onboard machine learning systems. The lack of uniform benchmarks for
comparing functional and non-functional capabilities of such models often leads to fragmented
progress. By providing a comprehensive set of evaluation criteria and ensuring reproducibility
through publicly accessible implementations, this work contributes to the establishment of best
practices in the field. This standardization is vital not only for advancing the current state of the art
but also for fostering collaboration across interdisciplinary teams involved in space exploration.

Moreover, the insights gained from simulating various image acquisition conditions point to
the need for resilient model designs. Real-world data from extraterrestrial environments are inherently
noisy and often deviate from the ideal conditions under which most machine learning models are
trained. The simulation pipeline developed in this study highlights the potential of synthetic data to
enhance model robustness. By incorporating noise, blur, and varying exposure levels during training,
models can be made more adaptable to the unpredictable nature of onboard imaging conditions. This
approach could also be extended to other domains where data acquisition is constrained, such as
underwater exploration or disaster response scenarios.

Another significant avenue for future research involves integrating multitask learning into the
proposed pipeline. While this study focuses on rock segmentation, many tasks in space exploration,
such as object detection, terrain classification, and hazard assessment, share underlying features. A
unified model capable of performing multiple tasks efficiently could further optimize resource
utilization onboard edge devices. Such a development would align with the overarching goals of
reducing mission costs and maximizing scientific output.

From a hardware perspective, the continued evolution of edge computing devices will play a
pivotal role in expanding the capabilities of onboard systems. Advances in processing power, memory
capacity, and energy efficiency will allow more complex models to be deployed without
compromising other critical functions. The proposed pipeline is designed to remain adaptable to these
advancements, ensuring its relevance in future mission architectures.

Additionally, the lessons learned from this study could inform the design of next-generation
space exploration vehicles. For instance, optimizing the placement and calibration of onboard sensors
and cameras to complement the strengths of machine learning models could enhance the overall
effectiveness of the system. Collaborative efforts between hardware and software teams will be
essential to achieving such seamless integration.

Finally, the broader implications of this work extend to the development of autonomous
systems in general. The principles of efficiency, robustness, and adaptability that underpin the
proposed pipeline are applicable to a wide range of applications beyond space exploration. Industries
such as autonomous driving, precision agriculture, and industrial automation could benefit from
adopting similar strategies for deploying machine learning models in constrained environments.

In conclusion, this study demonstrates that through thoughtful design and rigorous evaluation,
it is possible to bridge the gap between theoretical advancements in machine learning and their
practical application in extreme conditions. By addressing the unique challenges of space exploration,
this work not only advances the field of autonomous systems but also inspires new possibilities for
innovation in related domains. As we continue to explore the cosmos, the tools and methodologies
developed here will undoubtedly play a crucial role in shaping the future of intelligent exploration
systems.
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GAUSSIAN PROCESSES FOR PREDICTING PRODUCT QUALITY IN
MANUFACTURING.

Abstract: This paper presents an Al-driven solution designed to predict product quality in continuous
manufacturing processes. The solution integrates process parameters and product quality data collected from the
production line. The research is motivated by real-world challenges, focusing on an application within a key industry in
the UK. It outlines five essential criteria that any Al solution should ideally meet for continuous manufacturing:
scalability, modularity, reliable out-of-sample performance, uncertainty quantification, and resilience to
unrepresentative data. The paper examines the limitations of current Al methods based on these criteria and introduces
a novel solution. This approach utilizes a generalized product-of-experts Gaussian process, with a noise model built using
a Dirichlet process. The model's ability to meet the outlined criteria and its effectiveness in the case study within the
foundation industry are thoroughly demonstrated.

Keywords: ai-driven solution, product quality, continuous manufacturing, process parameters, production line,
scalability, modularity, out-of-sample performance

Introduction.

This paper focuses on a foundation-industry application where a product is produced using a
continuous manufacturing process. In this context, data on various process parameters is collected at
multiple stages of the production line, while product quality, specifically the fault density (the number
of faults per unit area), is measured at the end of the line. The objective of this research is to develop
an Al-based model, also referred to as a data-driven or machine-learned model, that can predict the
product quality based on the process parameters. Subsequently, this model can be utilized to optimize
the manufacturing process.

Drawing from previous studies [1-4] and the authors' extensive experience in developing Al
solutions for continuous manufacturing, several key criteria must be considered during the initial
stages of model development. These criteria are:

1. Scalability: As a continuous manufacturing process generates an ever-increasing amount of
data, the Al model must be capable of handling large datasets.

2. Modularity: Given that data evolves over time—affected by changes in operations or product
variations—older data may become less relevant. The model should be able to easily exclude
or update outdated data without disrupting its overall functionality.

3. Stable out-of-data performance: The model must be able to handle situations where the data
falls outside the range it was trained on. This could occur if a sensor malfunctions or if a new
product is introduced, and the model should indicate when it is inappropriate to rely on its
predictions.

4. Uncertainty quantification: The model should provide a measure of confidence in its
predictions, an essential feature when using Al for decision-making.

5. Robustness to unrepresentative data: It is crucial that the data used to train the model
reflects the true nature of the process. Data anomalies caused by external factors such as
equipment maintenance or unmeasured raw material changes must be identified and excluded
from training.

The paper further explores how existing Al methods measure up against these five criteria and
identifies their shortcomings. The proposed solution utilizes a generalized Gaussian process (GP)
model, enhanced with a Dirichlet process to account for noise. The method's performance in meeting
these criteria, as demonstrated through a case study in the foundation industry, is detailed and
analyzed.

focuses on Gaussian Processes (GPs), an influential machine learning technique employed in
both classification and regression problems, with the paper concentrating on its application in
regression.
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In GP regression, a probabilistic method is used to infer an underlying function based on
observed data. A key strength of GPs is their ability to quantify uncertainty in predictions. Unlike
traditional methods that infer specific parameters of a function, GPs derive samples from a
distribution over functions, making them non-parametric. This means they do not rely on a particular
family of regressors, allowing them to flexibly model complex relationships in data. This
characteristic of GPs has led to their successful application across various fields such as traffic flow,
engine modeling, structural dynamics, and robotics.

Standard GPs operate under the assumption that training data is contaminated by noise
following a Gaussian distribution. However, as highlighted by several studies, this assumption often
does not hold in real-world scenarios. For example, when data contains noise from non-Gaussian
distributions, standard GPs may produce inaccurate predictions. Several approaches have been
developed to address this, such as using a student-t likelihood to ignore outliers. These modifications
allow GPs to handle non-Gaussian noise, though they come with challenges in terms of computational
tractability. Techniques like Markov Chain Monte Carlo (MCMC), variational methods, and Laplace
approximations have been introduced to estimate model parameters in these cases. Models designed
to handle outliers are sometimes referred to as "robust GPs," which incorporate these advanced
likelihood functions to mitigate the influence of noisy data.

The standard GP regression typically assumes Gaussian noise, but this assumption was found
to be inaccurate for predicting product quality in the case study of interest. In this context, the goal is
to predict fault density in products manufactured through a continuous process, and the noise
corrupting the data is not Gaussian.

To overcome this, the authors introduce a Gaussian Mixture Model (GMM) for the
observations. This model assumes that the noise corrupting each observation comes from one of
several Gaussian distributions. The model uses 1-of-K allocation variables to associate each
observation with one Gaussian distribution from the mixture. This allows the noise characteristics to
vary depending on the source of the data, making it more flexible and better suited to the real-world
manufacturing scenario.

In this approach, the allocation variables are treated as latent variables and are integrated into
the model using a Bayesian framework. The model includes priors for these allocation variables,
which are updated iteratively as new data is observed. The resulting observation model is a mixture
of Gaussian distributions centered around the latent function, which is the actual output of the
manufacturing process being predicted (fault density).

This modified approach preserves the closed-form solutions associated with standard GP
models while allowing for non-Gaussian noise. The mixture of Gaussians helps to capture different
noise processes that affect the product quality measurements, such as sensor errors or external
disturbances, which would not be properly handled by a standard GP with Gaussian noise.

Through the Dirichlet Process (DP), the authors are able to model the number of mixture
components in a non-parametric way. This allows the model to automatically adjust the number of
Gaussian components based on the data, without having to pre-define this number. This flexibility is
essential for industrial applications where the noise characteristics may change over time.

In essence, this section outlines how a more sophisticated, non-Gaussian noise model can be
integrated into a Gaussian Process framework to improve prediction accuracy in manufacturing
processes. This method improves upon the standard GP model by introducing a mixture of Gaussians
and using a Dirichlet Process to determine the noise model dynamically.

The paper describes the implementation of the proposed robust Gaussian Process (GP) model,
which aims to predict product quality in a continuous manufacturing process by incorporating a
mixture of Gaussian distributions for noise modeling. The process involves two main steps: clustering
and regression.

Clustering Step: The first step involves clustering the residuals using a Dirichlet Process (DP)
mixture of Gaussian distributions. A DP is a stochastic process that helps define a distribution over
an infinite number of potential components, which is essential for clustering data points. The
clustering is based on a mixture of Gaussian components, where each observation is associated with
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a specific Gaussian based on its noise characteristics. The clustering is done in a Bayesian framework,
where priors are set on the allocation variables (which determine the association of each observation
to a particular Gaussian) and the variance parameters of the Gaussians themselves.
Regression Step: After clustering, the regression step estimates the latent function using the
GP approach. Only the observations that are identified as being corrupted by the least noisy Gaussian
are used for this step. This ensures that the regression step is not influenced by outliers or noisy data,
leading to more accurate predictions. The GP regression process uses the standard formulation to
estimate the parameters that best fit the data, providing predictions of the underlying product quality.
For large-scale applications, the proposed model uses a Product-of-Experts (POE) approach to
scale the computations. Each expert model is trained on a subset of the data, and the predictions from
each expert are aggregated to form the final predictive model. This approach allows the model to
handle larger datasets without running into memory issues and ensures that the computational cost
remains manageable.

Conclusions

In summary, the model combines the clustering of noisy data using a Dirichlet Process with
GP regression, making it scalable, robust, and modular. This allows it to effectively predict product
quality in continuous manufacturing processes, addressing challenges like noise, data outliers, and
scalability with large datasets.

The comparison is based on synthetic data corrupted by noise sampled from a mixture of
Gaussian distributions. The synthetic dataset comprises 150 realizations of a function, and the
models’ predictive accuracy is evaluated by calculating the Root Mean Squared Error (RMSE).

The experiment uses 150 data points where noise follows a Gaussian mixture model with three
components, each having different standard deviations and proportionalities. The RMSE results from
both Approach 1 and Approach 2 show that the DPGP outperforms both the standard GP and RGP
models. Specifically, the DPGP achieves the lowest RMSE, demonstrating its superior ability to
handle noise and outliers. The standard GP, in contrast, struggles with noisy data, leading to higher
RMSE values.

The comparison between the models also includes visual analysis, where the DPGP model's
clustering outcomes and predictive means are shown. The DPGP correctly identifies noise
components and does not overfit the data, unlike the standard GP, which overfits by following outlier
data points. The results suggest that the DPGP is not only more robust to outliers but also provides
more accurate predictions for unseen data.

In conclusion, the experiment illustrates the DPGP's strong performance, particularly in
environments with noisy data, while also showcasing its scalability and ability to integrate new data
seamlessly. This comparison highlights the advantages of the DPGP approach in predictive tasks
involving complex data, such as in continuous manufacturing processes.
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FAST, LIGHTWEIGHT DEEP LEARNING PIPELINE FOR UAV LANDING SUPPORT

Abstract: Despite significant advancements in aerial robotics, achieving precise and autonomous landing in
various environments remains a complex challenge. Several factors, such as terrain characteristics, weather conditions,
and obstacles, influence this process. This paper introduces a deep learning-based image processing pipeline that
accelerates the detection of landing pads and the estimation of the UAV's relative pose. Additionally, the system enhances
safety and reliability by incorporating human presence detection and error estimation for both the identification of
landing targets and pose computation. Human detection and landing pad localization are achieved through a
segmentation-based approach, which estimates the probability of presence. The landing pad's keypoints are then
identified using a regression algorithm that not only determines the coordinates but also provides an uncertainty measure
for each landing pad feature. To address these tasks, a set of lightweight neural network models was carefully selected
and tested. The paper presents performance metrics for each component of the system as well as for the entire processing
pipeline. These evaluations, conducted on embedded UAV hardware, demonstrate that the method can deliver precise,
low-latency feedback, ensuring safe landing operations.

Keywords: neural networks, performance metrics, low-latency, embedded hardware, precision, reliability,
feedback, localization

Introduction.

The process of autonomous landing for unmanned aerial vehicles (UAVS) remains a
significant challenge, even amidst the rapid advancements in aerial robotics. Several factors
contribute to the complexity of this task, including the terrain's characteristics, varying weather
conditions, and the potential presence of obstacles in the landing zone. This paper outlines a deep
learning-based image processing pipeline designed to enhance the accuracy of detecting landing pads
and estimating the UAV's relative pose with respect to these pads. Furthermore, the system
incorporates mechanisms for increasing safety and reliability, such as detecting the presence of
humans and estimating potential errors in landing target detection and pose computation.

The system utilizes a segmentation approach to estimate the likelihood of human presence and
the position of the landing pad. This information is followed by a regression algorithm that identifies
key points on the landing pad, determining not only their coordinates but also the associated
uncertainty of the detected key points. To achieve these tasks, a set of lightweight neural network
models was chosen and thoroughly tested. Performance and accuracy measurements of the system's
components are provided, showing that the system can deliver precise, real-time feedback, ensuring
safe landing operations.

Related Work

The challenges in autonomous UAV landing can generally be categorized into two
approaches: landing on natural surfaces and landing on prepared landing sites, each presenting its
own set of difficulties. Landing on natural, unmodified terrains typically involves finding a flat and
stable area of appropriate size, a task that often relies on aggregated measurements converted into a
cost function. However, this approach tends to be more complex than landing on predefined, feature-
rich artificial surfaces. As a result, natural surface landings are not typically considered for high-
precision operations, such as landing on moving platforms. Therefore, the system presented in this
work focuses on landing on an artificial, helipad-like surface, where the challenges are more
manageable due to predefined markings.

Vision-based methods for landing on platforms with defined shapes and textures commonly
utilize keypoints located on the surface to compute the relative pose between the UAV and the landing
pad. The use of a sparse set of keypoints for pose estimation has been widely recognized as a reliable
technique in this context. For instance, in the early works by [1], elementary image processing
operations like image binarization, segmentation, and feature detection were used to identify
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keypoints on a template marker. Though simple by today's standards, this approach laid the
foundation for more advanced techniques.

As the field evolved, more sophisticated vision-based systems were developed. These systems
often relied on hand-designed patterns or general-purpose markers such as QR codes, ArUco codes,
or AprilTags for precise pose estimation. Some methods, like those proposed by [2] or [3], used shape
analysis and the fitting of ellipses to landing pad templates, in combination with IMU data, to estimate
the UAV's relative pose. Other systems, such as [4], employed patterns involving concentric circles.
These hand-designed markers could also incorporate color information, like the marker described by
[5], which used color segmentation and Hu’s moments for reliable operation in cluttered
environments.

Additionally, the application of active markers, which emit infrared radiation detected by
thermal cameras or infrared sensors, provides another layer of precision. While these methods offer
advantages in terms of accuracy, they require additional power supplies and specialized sensors,
which may not always be feasible in UAV applications.

The rapid development of deep learning has further advanced vision-based landing systems.
Modern approaches, such as the ones used by [6], incorporate convolutional neural networks (CNNSs)
for detecting landing pads. These systems enhance detection accuracy and can handle situations
where the landing pad is partially obstructed, although they are often computationally intensive and
do not compute the relative pose directly.

Lastly, recent work has focused on real-time systems that use deep neural networks for person
detection and safe landing zone estimation. Overall, while many of these methods offer solutions for
specific aspects of the landing process, they often lack full integration or fail to meet the high
precision and safety requirements needed for autonomous UAV landings. This paper proposes a more
holistic approach that not only detects the landing pad but also ensures the safety of the landing
environment, incorporating real-time feedback to adjust landing maneuvers dynamically.

The complete pipeline consists of multiple components: a camera, image processing
operators, and a control algorithm for the UAV's platform. The camera captures images, which are
then processed by a set of lightweight neural networks designed to handle complex operations. These
networks detect and analyze objects like the landing pad and human presence, providing real-time
feedback.

The segmentation model processes the input image and generates two probability masks, one
for detecting human presence and another for the landing pad. This segmentation is followed by
contour extraction to identify regions of interest. When human presence is detected within the
threshold distance from the landing pad, the landing process is halted for safety reasons. If the landing
pad is detected, the algorithm identifies the largest region of interest (ROI) and applies a keypoint
detection model. This model estimates the locations of keypoints on the landing pad, as well as the
coordinates' variance and confidence level.

The keypoint regression step then uses the keypoint information to calculate the relative pose
of the UAV to the landing pad. This is done using a 3D model of the landing pad and a perspective-
N-point solver. The resulting pose is translated into the global coordinate system, allowing the UAV
to adjust its position accurately.

This methodology is designed to be implemented on embedded edge Al devices, optimizing
the system's computational performance while ensuring real-time operation for precise landing, even
under challenging conditions. The choice of neural networks and image processing techniques is
based on their ability to operate efficiently on resource-constrained hardware. The use of lightweight
models allows for high-throughput, real-time processing suitable for UAV applications.

We describe the hardware setup used for benchmarking the algorithm and introduce the
external simulation environment via Robot Operating System (ROS). This external simulation
enables early-stage algorithm testing in a virtual environment while using target hardware, following
the hardware-in-the-loop approach. This allows both synthetic and real-world data to be fed to the
same hardware controller.

4.1 Flying Platform

188



The research was conducted on a Holybro X500 quadcopter, a commercially available flying
platform selected for its open design and modification flexibility. This platform is powered by the
Pixhawk 4 autopilot flight controller running PX4 firmware version 1.11.3. The system is open-
source and well-documented, allowing easy adaptation for various applications. The platform's
carbon frame, which weighs only 1000 g without batteries, supports four 2216 KVV880 motors and 10
x 4.5 propellers, powered by a 5000 mAh Li-Po 4s battery. With a maximum take-off weight of 2000
g, the platform can carry additional payloads, such as cameras and onboard computers, while
maintaining a flight endurance of over 10 minutes.

4.2 Hardware Description

To ensure the onboard processing capabilities for the UAV, we chose small, lightweight
devices with low power consumption. The goal was to perform neural network inference on edge Al
devices with minimal energy requirements. We evaluated the following embedded Al devices:

o Nvidia Jetson Nano: This device is the lowest-performance model in the Jetson family,
delivering 472 GFLOPs while consuming just 10 watts. It features a quad-core Cortex A57

ARM processor and a Maxwell GPU with 128 CUDA cores, weighing only 140 g.

o Nvidia Jetson Xavier NX: A more powerful device designed for embedded applications, it
includes a six-core CPU, 384 CUDA cores, and 64 tensor cores. It also contains two Nvidia

Deep Learning Accelerator (NVDLA) engines for deep learning tasks, with a weight of 172

g.

For the vision sensor, we used the Luxonis Oak-D-Lite, a USB camera with a color sensor
that provides full-HD frames and a 81-degree field of view. This camera was chosen for its low cost
and versatility, and although it also captures depth images via a stereo pair, the depth information was
not used in these experiments.

4.3 Drone Simulation and Off-Board Control

Recent advancements in flight controllers, such as PX4, allow for control via external signals.
This is made possible by integrating a companion computer on board, which provides top-level
control commands with a minimum frequency of 2 Hz. To override the autopilot control, the flight
controller must be in off-board mode. Communication between the systems is established through the
MAVROS node, which translates ROS topics into MAV Link-compatible messages.

Off-board control of UAVSs requires rigorous testing to avoid dangerous situations that could
cause the vehicle to crash. To ensure safety, we used both software-in-the-loop (SITL) simulations
with PX4 and real-world hardware for testing. The simulation runs on a personal computer, while
communication with the embedded device is handled over a local network, enabling the algorithms
to be tested directly on the target hardware without additional delays.

Finally, the entire inference pipeline was evaluated, taking into account both speed and
accuracy. For segmentation, the best performance was achieved using the DeepLabV3Plus +
ResNet10t combination, while for keypoint regression, the MobileNetV3 100 and LCNet 050
models were selected due to their higher processing speeds. Aggregating the results, the system
achieved 12.86 + 0.11 FPS on the Jetson Nano and 83.38 + 6.96 FPS on the Jetson Xavier NX. The
best speed-performance combination was found with DeepLabV3Plus + LCNet 050 for
segmentation and MobileNetV3_100 for keypoint regression, which resulted in 19.33 + 0.51 FPS for
the Jetson Nano and 93.64 + 1.22 FPS for the Xavier NX.

It is important to note that the vision pipeline must meet specific computational requirements
to work effectively. The use of deep learning necessitates that the UAV platform be equipped with
an embedded GPU to perform inference at the required speed, limiting its use to UAV platforms that
have the necessary space and power capacity to carry additional devices and their power supply.

Further experiments showed that the pipeline is capable of detecting the landing target and
keypoints even under challenging conditions, such as motion blur, scaling, perspective changes, and
poor lighting. The model's robustness was evaluated with data augmentation techniques like
perspective transformations, scaling, rotation, and the addition of noise. The results confirm that the
algorithm can handle these real-world conditions. Additionally, it can fill in missing keypoint data
caused by occlusions or damage to the landing pad, while also informing the system about the
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uncertainty in keypoint positions. This feature is crucial for making informed decisions about whether
or not to proceed with landing, contributing to a more cautious approach when necessary.

The authors present a deep neural network-based vision pipeline designed to offer precise
landing support for UAVs. This system enables real-time processing, delivering landing target
information, including positional and rotational data relative to the UAV's camera, ensuring precise
landings. The method is optimized to run efficiently on embedded GPU devices commonly used in
UAV platforms, processing up to 20 frames per second.

One of the key differences between this approach and others is the use of deep learning
algorithms to not only detect landing pads but also handle potential human presence in the landing
zone. Additionally, the system assesses the confidence in the detected keypoints' positions, which
further enhances landing safety. The method is resilient to environmental factors such as lighting
variations, scaling, and rotation, demonstrating robustness even when dealing with partial data or
occlusions, thanks to its advanced explainability techniques.

The relative pose estimation’s accuracy was evaluated using a high-precision external system,
confirming that the deep learning model can estimate landing pad keypoints with sufficient accuracy
for reliable landing. However, the system’s adaptability to various landing pads depends on their
visual characteristics, such as high contrast with the environment and the presence of at least four
distinct, non-collinear keypoints.

Future research will focus on refining this system for real-world UAVs, especially for landing
on moving platforms, which introduces additional challenges. The authors also intend to explore
optimization techniques to improve processing speed, such as hardware upgrades and neural network
optimization methods like quantization and pruning. This future work aims to ensure that the system
can handle even more complex landing scenarios.

REFERENCES

5. Sharp, C.S., Shakernia, O., Sastry, S.S., 2001. A vision system for landing an unmanned aerial vehicle. In:
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164),
Vol. 2. leee, pp. 1720-1727.

6. Zhang, G., Zhou, F., 2005. Position and orientation estimation method for landing of unmanned aerial vehicle
with two circle based computer vision. Acta Aeronaut. Astronaut. Sinica 26 (3), 344-348.

7. Yang, S., Scherer, S.A., Schauwecker, K., Zell, A., 2013a. Onboard monocular vision for landing of an MAV on
a landing site specified by a single reference image. In: 2013 International Conference on Unmanned Aircraft
Systems. (ICUAS), IEEE, pp. 318-325.

8. Lange, S., Sunderhauf, N., Protzel, P., 2009. A vision based onboard approach for landing and position control
of an autonomous multirotor UAV in GPS-denied environments. In: 2009 International Conference on Advanced
Robotics. IEEE, pp. 1-6.

9. Garcfa-Pulido, J., Pajares, G., Dormido, S., 2022. UAV landing platform recognition using cognitive
computation combining geometric analysis and computer vision techniques. Cogn. Comput. 1-21.

10. Lee, S., Jo, D., Kwon, Y., 2022a. Camera-based automatic landing of drones using artificial intelligence image
recognition. Int. J. Mech. Eng. Robotics Res. 11 (5), 357-364.

190



UDC 621.316.4:681.3.06:004.7

Federico Lombardo, Federico Pittino, Daniele Goldoni, Luca Selmi (University of Modena and
Reggio Emilia, Modena, Italy).

MACHINE LEARNING FOR NANOPARTICLE SIZING WITH BIOSENSOR ARRAYS

Abstract: Many technology applications still exist where Artificial Intelligence techniques, carefully tailored to
meet specific application requirements, can deliver significant improvements in hardware performance. One such area
is biosensing using innovative complementary-metal-oxide-semiconductor (CMOS) nanocapacitor arrays. These sensors
have the potential to function as advanced imaging platforms, but despite the progress in the field, there remains a
significant gap in the knowledge required to accurately and reliably interpret their responses to analytes. This study
harnesses the power of Machine Learning (ML) methods in computer vision to develop precise and robust models across
various operational conditions. By recognizing the parallels between multifrequency capacitance maps and multispectral
images, we identify the most suitable ML algorithms to predict the size of analytes detected by the nanoelectrode array
biosensor. As a key example, we focus on measuring the radius of dielectric spherical nanoparticles dispersed in deionized
water and phosphate-buffered saline. We compare the performance of large, well-established image-processing neural
networks to simpler, purpose-built models. Large training datasets are generated by combining precise finite element
simulations of sensor responses with experimental data. Remarkably, we achieve an excellent level of accuracy,
comparable to traditional sizing methods, when determining the size of nanoparticles that are similar in scale to the pixel
pitch of the array. The median size error remains below 15% across all scenarios when a small fraction of measured data
samples is added to the simulation-based training dataset.
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Introduction.

Machine Learning (ML) and Deep Learning (DL) technigues have revolutionized many fields,
including computer vision, speech recognition, natural language processing, and generative models.
However, their application in certain sectors is still in its early stages, despite the substantial potential
they hold. One such area is biosensing, particularly when it comes to accurate and reliable
measurements of biological objects suspended in liquid solutions, such as biomolecules and cells.
Although there have been some attempts to integrate ML into biosensing technologies, including
limited applications for biosensors, significant challenges remain. A primary obstacle is the lack of
extensive, high-quality datasets that can effectively cover the entire operational space of these
sensors. This scarcity of data hinders the ability to achieve the high accuracy and robustness that ML-
based systems typically promise.

One promising direction for improving the accuracy of conventional biosensors is to
incorporate ML-based data analysis. This approach has the potential to enhance both the precision of
measurements and the reliability of data interpretation. However, the presence of noise, variability,
and uncertainty in measurements complicates the process, often making accurate and cost-effective
data analysis difficult. Furthermore, accurate physics-based simulations, which could provide cleaner
and larger datasets for training, are still not widely available. Additionally, most biosensing platforms
operate with limited parallelism, further restricting the collection of large datasets across multiple
analytes. In recent years, complementary metal-oxide—semiconductor (CMOS) micro/nano-electrode
array systems have been developed to address some of these challenges. These systems offer various
advantages, such as miniaturization, high parallelism, and the ability to mitigate the spatial sensitivity
limits imposed by Debye screening. These biosensors can detect nano-scale objects (objects with
dimensions < 1 pm) without requiring labels. As a result, CMOS-based nanoelectrode array
biosensors have gained attention for applications ranging from measuring microparticles and
nanoparticles to detecting pollutants in environmental monitoring.

While these systems show promise, they still require further optimization, particularly when
it comes to accurately estimating the size of nanoparticles at resolutions that match the pixel pitch of
the sensor arrays. This work explores how advanced ML methods, originally designed for computer
vision tasks, can be adapted for estimating nanoparticle sizes based on multi-frequency capacitance
data collected by nanoelectrode array biosensors.
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By leveraging the structural similarities between capacitance maps and multispectral images,
this study identifies suitable ML algorithms to predict the size of nanoparticles, specifically focusing
on spherical dielectric particles. The results suggest that machine learning methods, when
appropriately trained on simulations and real-world measurements, can achieve high accuracy in
nanoparticle sizing, even when the particle sizes approach the resolution limits of the sensor arrays.
This work paves the way for more accurate, cost-effective biosensing technologies capable of
monitoring and quantifying nanoparticles in complex environmental and biological systems.

1 Measurements: Experimental Setup, Procedure, and Data Preparation

The work utilizes a High Frequency Impedance Spectroscopy (HFIS) nano-electrode array
chip, which was designed and provided by NXP Semiconductors. This CMOS chip incorporates a
256%256 array of individually addressable nano-electrodes (NEs), each with a 90 nm radius and a
600 nm x 720 nm pitch, fabricated with 90 nm CMOS technology. The chip uses Charged-Based
Capacitance Measurement (CBCM) and ad hoc calibration procedures to measure capacitance within
a frequency range of 1-70 MHz (with potential extension to 500 MHz).

Capacitance images are generated by sequentially activating one row of electrodes at a time
while grounding the others, effectively creating a large counter electrode. The capacitance change
due to analyte arrival is measured by the difference in capacitance before and after the analyte's
interaction with the electrodes. Polystyrene (PS) nanoparticles of specific sizes (275 nm and 500 nm
nominal radii) suspended in MilliQ water and PBS were used for the measurements. The
nanoparticles were prepared using a combination of dynamic light scattering (DLS) and filtering to
ensure purity. The system was initialized, allowed to reach thermal equilibrium, and measurements
were conducted at 22°C.

Data preprocessing involved the identification of capacitance maps (7x7 electrodes) that
contained only a single nanoparticle. Noise reduction strategies were implemented to eliminate outlier
data and match experimental results with simulations. Specific steps were taken to calculate the mean
and standard deviation of capacitance from the outermost electrodes, and a noise model was
introduced to simulate realistic measurement conditions.

2 Numerical Simulations: Calculations and Data Preparation

Simulations of the nanoelectrode array response were conducted using the ENBIOS software,
which solves the Poisson—Boltzmann and Poisson—Drift-Diffusion equations to calculate capacitance
changes due to nanoparticles. Simulations were performed under two conditions: one with the particle
present and one without, across a matrix of electrodes surrounding the particle. For accurate
simulations, only the innermost 7x7 electrodes were considered.

Simulations were performed for the MilliQ environment using a constant frequency of 50
MHz, and for PBS using a frequency range of 2-70 MHz. The simulated data included various
particle sizes (ranging from 200 nm to 1500 nm) and positions, with an augmentation technique
involving flipping images to increase model robustness.

3 Radius Estimation Model Development

To estimate the particle radii, machine learning (ML) algorithms were applied to the
multifrequency capacitance maps, taking advantage of the similarity to regular images used in
computer vision. Several deep learning models, including MobileNet-VV3Small, ResNet18, and
simpler convolutional neural networks (CNNs), were developed and tested. Special emphasis was
placed on creating smaller models to prevent overfitting, due to limited training samples and the need
for low-memory, low-power applications in edge devices.

Two variants of the MobileNet architecture, Tiny MobileNet and SuperLite MobileNet, were
created with reduced parameters for optimal performance in this application. Additionally, CNN
architectures, such as the Two Blocks Network and Simplest Network, were designed for their
simplicity and effectiveness in nanoparticle sizing.

The models were trained using the Gaussian Negative Log-Likelihood loss function, which
allows the model to estimate both the mean and variance of the particle radius, aiding in uncertainty
quantification. The training was performed using the Adamax optimizer.

Results in MilliQ Environment:
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Training and Test on Simulated Samples Only

Initially, the ML models were trained using only simulated data. The training data set included
all nanoparticle radii except the 750 nm samples. White Gaussian noise, estimated from the
measurement data, was added to the simulation data to stabilize the results and reduce model
overfitting. The hyperparameters of the models were optimized on a validation set, and their
performance was tested on a separate test set of simulated particles with a radius of 500 nm.

The results, as depicted in the figures, reveal that models with fewer parameters, such as the
Simplest Net and Two Blocks Net, exhibited the best performance, achieving median errors below
10%. In contrast, larger models like MobileNet showed severe overfitting, which significantly
degraded their performance, thus excluding them from further analysis.

Test on Measurement Samples (Different Trainings)

Following the training on simulation data, the models were also tested using real measurement
samples of nanoparticles with radii of 275 nm and 500 nm. The training data included only a small
subset of measurements, and the models were evaluated based on how well they generalized to these
new samples. Notably, Tiny MoNet, which had performed poorly in previous stages, was excluded
from this part of the analysis.

Results demonstrated that, except for Tiny MoNet, all models successfully distinguished
between the two nanoparticle radii. The Simplest Net exhibited the lowest median error and the least
spread in its predictions. However, when a small number of measurement samples (10 per radius)
were included in the training data, performance did not significantly improve for most models, except
for the SuperLite MoNet, which showed enhanced accuracy. The lack of improvement was attributed
to the sensitivity of the measurements to uncontrolled variables, such as particle displacement and
alignment relative to the electrode, particularly for nanoparticles smaller than the electrode pitch.

Results in PBS Environment:

Training and Test on Simulated Samples Only

The same procedure as in MilliQ was applied to the PBS environment. The results confirmed
previous findings: models with fewer parameters, like Simplest Net and Two Blocks Net,
demonstrated superior accuracy, with median errors of only a few percent. SuperLite MoNet, on the
other hand, performed poorly, exhibiting a higher spread of errors, especially for the larger
nanoparticles (500 nm).

Test on Measurement Samples (Different Trainings)

The models were then tested on measurement data in PBS. Several adjustments were made in
the training process to account for the effects of salinity and multi-frequency data. The accuracy of
noise estimation was improved by only considering measurements from the 275 nm radius
nanoparticles. A data augmentation technique was applied, adding random Gaussian noise to the
ground truth values of the radius during training to improve model robustness.

The results from testing on the PBS measurement data showed a significant improvement
when a small subset of measurement samples was added to the training set. In particular, SuperLite
MoNet, which had performed poorly on the simulation-only training set, became the most accurate
model after incorporating measurement data.

Summary of Results:

In summary, the models trained on simulations with a small number of measurement samples
showed the best performance, providing reliable nanoparticle sizing even when the particle size was
close to the pixel pitch of the array. The Simplest Net and SuperLite MoNet models achieved the
highest accuracy, with median errors of less than 15% in all scenarios, including tests in both MilliQ
and PBS environments.

In contrast, relying solely on measurement data proved less effective, particularly for the
larger nanoparticles in PBS. The addition of simulated data greatly enhanced model performance by
increasing the diversity of the training set and providing more stable predictions. These results
underscore the potential of combining simulated data with real measurements for training robust
machine learning models, which is crucial for nanoparticle metrology using advanced biosensor
technologies. This study provides a significant contribution to enhancing the functionality of
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nanoelectrode array biosensors with the integration of optimized machine learning (ML) algorithms.
These algorithms are applied to the capacitance measurements of nanoparticles in liquid solutions,
specifically focusing on estimating their physical parameters, such as radius. The work exploits the
structural similarities between multi-frequency capacitance maps obtained from the sensors and
regular multi-spectral images. This approach enables the application of advanced ML techniques
traditionally used in computer vision. The case study centers around the estimation of nanoparticle
radii, a particularly challenging task due to the sub-micron size of the particles and the smaller
dimensions compared to the pixel pitch of the imaging system. The study utilizes simulated data as
an augmentation technique to improve model performance, enhancing the metrology of nanoparticles.
The primary findings of this research include the successful application of simplified versions of
state-of-the-art deep learning models originally developed for RGB image recognition. These models
have been tailored to operate with the specific characteristics of capacitance maps. Additionally, the
study demonstrates how machine learning can overcome some of the current limitations of
nanoparticle metrology, such as detecting and sizing particles in aqueous environments without the
need for complex and costly optical techniques. This is especially relevant in the context of
monitoring nanoplastics in water, where current methods are inadequate.

A crucial aspect of the methodology is the incorporation of simulated data samples to train
the ML models, which proves to be an effective strategy in enhancing the accuracy and robustness of
nanoparticle measurements. The models trained with this data achieve performance comparable to
traditional dynamic light scattering (DLS) methods, but with the added benefit of being able to
operate in a label-free, high-throughput manner. Overall, the research shows promising results,
indicating that nanoelectrode array biosensors, when coupled with optimized machine learning
models, can provide accurate, real-time measurements of nanoparticle characteristics, facilitating
future advancements in fields such as environmental monitoring and medical diagnostics.
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Abstract: Machine learning methods have been effectively applied to develop high-performance control
components for cyber-physical systems, where control dynamics arise from the integration of multiple subsystems.
However, these methods may not always provide the level of trustworthiness needed for safe operation in critical
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Introduction.

In recent years, machine learning has played a crucial role in developing high-performance
control systems for cyber-physical systems (CPS). These systems, which combine computational
algorithms and physical components, often operate in a closed-loop setup where control dynamics
emerge from multiple interacting subsystems. While machine learning approaches, especially neural
networks, have significantly improved the capabilities of CPS in fields like autonomous vehicles,
smart manufacturing, and medical applications, they come with challenges. One of the key concerns
is their trustworthiness in safety-critical environments, where any malfunction could have severe
consequences.

To address these concerns, we propose combining two verification techniques: interval
arithmetic and formal verification methods. This approach helps assess the safety properties of
closed-loop systems that use neural network controllers. Specifically, interval arithmetic is used to
bound the possible outputs of the neural network, ensuring that the system behaves within safe limits
under all possible inputs. Formal verification, on the other hand, uses logical proofs to guarantee that
the system meets safety requirements, offering a higher level of assurance.

We demonstrate the effectiveness of this combined approach by applying it to a model-
predictive controller for autonomous driving. Our results show that this method can verify neural
network properties more efficiently than existing tools, with less computational overhead. Moreover,
by integrating both techniques, we can create a formal model of the neural network within a higher-
order logic framework, making it easier to prove the safety of closed-loop systems.

In the future, this method could be applied to a wide range of critical systems, ensuring that
machine learning-based controllers are not only powerful but also safe and reliable for real-world
applications.

2. Current State of the Art

Recently, significant efforts have been focused on formal or analytical verification of neural
networks using various theoretical approaches. Most of these methods are concentrated on verifying
networks with ReLLU activation functions for multi-layered networks, where the activation function
has a linear nature at each stage.

One of the most commonly used methods involves SMT-based tools for verifying neural
networks. These tools help check whether the output values of the network meet the specified
requirements, ensuring the network's correctness for certain input data.

Another approach is the use of hybrid automata for formalizing networks with more complex
activation functions, such as sigmoid or hyperbolic tangent. This approach allows the verification of
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not only linear but also nonlinear activation functions, opening new opportunities for modeling more
complex neural networks.

Simulation-based methods, particularly Monte Carlo, are also widely used for the empirical
analysis of systems with neural networks. These methods simulate the probabilistic behavior of the
network for different input values, providing a statistical assessment of the network’s stability and
accuracy in real-world conditions.

Each of these approaches has its advantages but also limitations, especially in terms of
scalability for large networks and complex dynamic systems. In our work, we focus on integrating
several approaches to achieve more efficient and reliable verification results for closed-loop systems
that embed neural networks as control components.

The third section of the document provides background information on the verification tools
and methods used in the paper. It discusses the Prototype Verification System (PVS), which is a
mechanized environment for formal specification and verification. PVS enables users to specify
systems through theories, which are sets of formulas, variable declarations, and function declarations.
The PVS language supports a variety of base types like naturals, integers, reals, and booleans, all of
which are defined in a fundamental library prelude. More complex data types, such as matrices, are
provided by the Nasalib extensions.

The PVS proof system is based on sequent calculus, which allows users to prove theorems by
manipulating sequents. In sequent calculus, a sequent is a logical expression that separates the
antecedents (premises) from the consequents (conclusions). The system can perform inference rules
to break down complex proofs into simpler ones, and a proof is considered successful when all
branches of the proof tree have been validated.

The document then outlines the neural network structure used in the verification approach. It
describes the input-output relations for neural networks and introduces a specific type of network
architecture, the fully connected feed-forward neural network. The network is defined by a series of
layers, each with its own weights and biases. The neural network is mathematically represented in
terms of matrix operations, where the activation function plays a key role in transforming the
network'’s output.

Interval arithmetic is used to evaluate the possible output range of a neural network by
calculating bounds for its outputs given the range of possible inputs. In the approach outlined in this
section, each input feature to the neural network is represented as an interval with upper and lower
bounds, and the goal is to compute the output intervals for each neuron in the network. The key idea
is to propagate these input intervals through the layers of the network, applying interval arithmetic
operations at each layer. These operations evaluate the bounds for intermediate activations, which are
then used as input intervals for the subsequent layers. This process continues until output intervals
are obtained for the final layer of the network.

The use of interval arithmetic ensures that the computed output bounds are guaranteed,
meaning that the neural network will always produce results within the computed intervals for any
inputs that fall within the specified input bounds. This provides a systematic and reliable way of
verifying neural network behavior, particularly in systems where safety and dependability are
paramount.

The section also emphasizes the importance of handling non-linear activation functions, such
as the hyperbolic tangent (tanh) and sigmoid, which are commonly used in neural networks. The
approach described applies to feed-forward neural networks, especially in regression tasks, and
focuses on providing verified safety properties for closed-loop systems controlled by neural networks.

The neural network is first modeled as a sequence of transformations, starting with the input
layer and passing through each subsequent fully connected layer. Each layer is represented by a
mathematical function in PVS, which operates on matrices to describe the transformation of the
network’s input through weights and biases, followed by an activation function. This formalization
ensures that the neural network’s operations are captured precisely, using the formal language of
higher-order logic.
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Input constraints are also imposed in the formal model, with each input variable bounded
within specific ranges. These bounds are essential for ensuring the network’s behavior adheres to
safety properties. The PVS model also specifies properties of the network’s outputs, such as ensuring
that they remain within acceptable limits under certain conditions, and these properties are proved
within the formal framework.

Finally, the paper discusses how this formal model, once constructed, can be used to prove
safety properties of systems where the neural network is deployed in a closed-loop system, such as
in autonomous driving or industrial control applications. The neural network’s behavior is rigorously
analyzed, ensuring that it operates within defined safety bounds in these critical applications. This
formal verification process, leveraging PVS and interval arithmetic, provides a solid foundation for
the safe deployment of neural networks in cyber-physical systems.

1 Automatic Theory Generation

To address the challenge of scaling up the verification process for large networks, the paper
introduces a Python-based tool designed to automatically generate a PVS theory starting from a pre-
trained PyTorch neural network model. This process efficiently converts the neural network's model
into a formal theory, allowing for automatic verification. The complexity of generating the theory
depends on the number of parameters in the network, with the time for creating a theory being
relatively short (e.g., two seconds for a simple network with a 3GHz desktop processor). However,
certain assumptions are necessary to ensure the theory generation is tractable:

o The network must be a feed-forward model (e.g., a multi-layer perceptron).

e The number of neurons should be limited to 60-70 to maintain scalability with the prover.

e Linear activation functions are recommended for tighter bounds and to reduce over-
approximations.

2 Interval Arithmetic Computation

The paper integrates interval arithmetic into PyTorch by extending the base Tensor class to
include an IntervalTensor class, where each tensor element represents a range of values. This allows
for interval-based computations on neural network models. The pyinterval library, which implements
algebraically closed interval operations, is used for this purpose. This extension makes it possible to
propagate input intervals through the network, applying interval arithmetic to each layer’s output,
thus generating bounds for the network’s output.

This integration allows the IntervalTensor to function seamlessly with pre-trained models in
PyTorch without requiring recompilation of the entire framework. By overriding the layer operation
implementations within the IntervalTensor class, it provides a common interface that adheres to
PyTorch’s original structure, enabling efficient interval arithmetic without disrupting the PyTorch
model flow.

3 A Small Example of the Two Techniques

To illustrate the practical application of these techniques, the paper provides an example of a
simple neural network with a linear layer followed by a ReL U activation function. The corresponding
PyTorch code for this model is provided. Using the automatic theory generation tool, the paper
demonstrates how a formal PVS theory can be generated for this simple network. The constraints on
the input variables and the corresponding theorem to verify the output are specified, showing how
these methods work in practice.

4 Limits of the PVS Theory Generation and Proof

The section also highlights some limitations of the approach. As the size of the network
increases, both the complexity of generating the formal theory and the associated computational costs
increase. The scalability of the theory generation process is constrained by the size of the network,
with the automatic tool being effective for moderately sized networks but encountering challenges
with very large ones.

In conclusion, Section 6 focuses on the integration of formal verification tools within the
PyTorch framework, showing how interval arithmetic can be applied to neural networks for proving
their safety properties in a closed-loop system. This approach is designed to be scalable, although it
has practical limits when applied to very large networks.

197



In this use case, the application of neural networks for controlling an autonomous vehicle's
adaptive cruise control system is explored. The scenario considered involves the vehicle (referred to
as the "ego car") adjusting its speed and acceleration based on the position and speed of a lead car,
which is detected through sensors.

The MPC uses three nominal inputs: the relative velocity of the lead car, the relative distance,
and the ego car’s longitudinal velocity. The output of the controller is the acceleration of the ego car,
which is the only regulated variable.

The paper proposes replacing the MPC with a surrogate model—a neural network—capable
of handling the same inputs to generate the desired acceleration output. The neural network is trained
on data consisting of input-output tuples: the lead car's relative velocity, relative distance, and the ego
car’s longitudinal velocity, with the corresponding acceleration of the ego car. The network is trained
using the ADAM optimizer for 1000 epochs with a mean squared error (MSE) loss function,
achieving an MSE of 0.034.

The substitution of the MPC with a neural network in this context is motivated by its potential
for more efficient computation, particularly in embedded systems. The MPC traditionally solves a
constrained quadratic programming (QP) optimization problem in real time. However, using a neural
network to replace the MPC offers computational advantages, especially when real-time problem-
solving is required, as neural networks can provide a faster solution.

This safety property is crucial to verify the reliability of the autonomous system, particularly
in the context of a neural network replacing the original MPC.

To evaluate the neural network’s performance, the boundaries of the network's output are
analyzed. The neural network’s outputs are evaluated by adjusting the input parameters, particularly
the relative distance between the two cars. This test simulates the scenario where the ego car is too
close to the lead car and needs to decelerate to maintain the safety distance.

Comparing the verification times of different neural network verification tools, the results
show that the proposed method significantly reduces the time overhead, making it more efficient than
existing approaches. This is particularly valuable in the context of safety-critical systems where
verification time is a crucial factor.

Through this process, the approach not only ensures that the neural network behaves safely
within the defined bounds but also demonstrates how the combination of formal verification
techniques, such as interval arithmetic and theorem-proving, can be effectively used to guarantee the
reliability of neural networks in dynamic and closed-loop systems, such as autonomous driving.

Conclusion

We have developed an innovative verification method that combines the advantages of
interval arithmetic with formal verification through theorem proving. This hybrid approach offers a
strong framework for validating the safety and dependability of neural networks in closed-loop
systems.

Our method is fully compatible with the PyTorch deep learning framework, allowing for easy
integration without requiring significant modifications to existing workflows. This enabled us to
formalize a closed-loop system for an adaptive cruise control application, where a model-predictive
controller was substituted with a neural network that had been thoroughly trained. Additionally, we
were able to define and verify safety requirements for the system-controlled variables.

The proposed approach showed considerable improvements in verification efficiency,
drastically reducing the time overhead compared to other leading techniques. Future work will focus
on optimizing the interval arithmetic method, addressing the limitations related to overapproximation
of results, and enhancing interval computation performance through GPU acceleration. Furthermore,
we plan to extend this research by incorporating more detailed vehicle dynamics, including modeling
behavior in PVS with a set of differential equations to account for more complex scenarios.
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Introduction.

Over the past decade, DSSE has gained significant attention in power system research due to
the increasing role of distribution networks in energy production, especially with the decline of
centralized generation. Distribution networks have become more important as they incorporate
renewable energy sources and smart grid technologies, improving the efficiency, sustainability, and
reliability of power grids.

The section highlights the role of DSSE in improving network monitoring and analysis in real-
time. Distribution systems are critical to the sustainability and reliability of power grids, especially
as they integrate renewable energy sources. The paper reviews several methods for DSSE, including
traditional model-based algorithms like Weighted Least Squares (WLS), which require detailed
knowledge of network parameters, and more advanced approaches such as machine learning and
optimization techniques. Among the modern approaches, Deep Neural Networks (DNNs) have shown
promise due to their ability to model complex, non-linear relationships in large datasets, though they
require substantial computational resources.

The introduction also discusses various approaches to DSSE, categorizing them into model-
based, forecasting-aided, and data-driven techniques. While traditional model-based methods are still
widely used, the shift towards data-driven methods, particularly those using DNNs, is seen as a
promising future direction due to their scalability and flexibility. The paper focuses on improving the
accuracy of DNN-based DSSE using a hyperparameter optimization technique called Tree-structured
Parzen Estimator (TPE), which is demonstrated on real-life low-voltage distribution networks in
Hungary.

This approach marks a significant improvement over traditional methods like WLS by
optimizing hyperparameters for better accuracy and computational performance. The section
concludes by outlining the potential advantages of DNN-based DSSE with TPE in terms of accuracy,
efficiency, and its applicability in real-world systems, especially for tasks such as renewable energy
integration and real-time monitoring.

This part discusses the datasets used for the study, focusing on real-life low-voltage (LV)
supply areas in Hungary. These networks were modeled to address challenges in obtaining network
topology information, using data from Distribution System Operator (DSO) systems. The areas were
selected based on their complexity and size, with each containing various circuits connected to an
external grid element, a medium-voltage to low-voltage (MV/LV) transformer, and associated
network components.

The four areas identified by numbers 18680, 44600, 44333, and 20667 are considered. Each
area consists of different numbers of circuits, ranging from 2 to 10. The method used for modeling
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LV networks adapts to data with inconsistent or uncertain lengths, utilizing available network data
for better accuracy in simulating realistic scenarios.

In terms of input and output, the primary neural network applied in the study was a Fully
Connected Neural Network (FCNN). The neural network used 15-minute interval data from both
pseudomeasurements and weather data, such as temperature, sun altitude, radiation, wind speed, and
precipitation. These data were used to improve the accuracy of the state estimation by accounting for
external factors influencing consumption patterns. The data was also normalized and transformed
into cyclical encodings to ensure proper learning performance.

The inputs to the network included power consumption, time data, and weather conditions,
while the outputs were voltage amplitudes and angles. The data was divided into two sets: one for
training and the other for validation. Training was performed on data from odd weeks, and validation
was done using data from even weeks. This setup helped assess the accuracy and generalizability of
the neural network model.

By applying this method, the study demonstrated that neural networks could effectively model
and estimate power network states while integrating weather data and temporal factors, leading to
improved accuracy compared to traditional estimation methods.

The authors introduce their approach for optimizing deep neural networks (DNNs) for
Distribution System State Estimation (DSSE) tasks, specifically in the context of low-voltage (LV)
networks. They begin by detailing the architecture of the fully connected neural network (FCNN)
used in the study. FCNN was chosen for its simplicity, which allows for a clear comparison of how
different hyperparameters affect network performance. The first layer of the FCNN computes the
output by multiplying the input data with a weight matrix and adding a bias term, followed by non-
linear activation using the ReLU function. This non-linearity is key for enabling the network to
capture complex relationships in the data.

The paper also compares the FCNN to other competing architectures, such as Recurrent
Neural Networks (RNNs) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
units, as well as Graph Neural Networks (GNNSs). These alternatives are noted for their ability to
process sequential data and model spatial relationships, respectively. For example, RNNs excel at
capturing temporal dependencies, while GNNs are particularly effective in situations where data is
structured as a graph, as in power grid networks. However, the study ultimately concludes that the
FCNN with hyperparameter optimization outperforms these other models in the specific context of
DSSE for low-voltage networks.

Training these neural networks involves optimizing a number of hyperparameters, and the
authors use the Tree-structured Parzen Estimator (TPE) algorithm for this purpose. TPE is a Bayesian
optimization method that models the hyperparameter space probabilistically, allowing it to more
efficiently search for the best configuration compared to traditional random search or grid search
methods. This approach allows the authors to achieve better results in terms of estimation accuracy
and computational efficiency. Notably, TPE is shown to significantly outperform random search, and
even the WLS method, in terms of reducing error and computational overhead.

By comparing the results of these different architectures and optimization strategies, the
authors demonstrate the effectiveness of FCNN combined with TPE for DSSE tasks. Their findings
emphasize the critical role of hyperparameter optimization in improving the performance of neural
network-based state estimation methods for real-world low-voltage networks.

This part focuses on the experimental results of applying a deep neural network (DNN) for
distribution system state estimation (DSSE) in low-voltage networks. The results demonstrate
significant improvements in accuracy and efficiency compared to traditional methods such as the
weighted least squares (WLS) method.

The DNN-based approach significantly reduces the relative error in voltage amplitude and
angle estimations, achieving improvements ranging from 14% to 73%, depending on the network's
size. This demonstrates the DNN's robustness and its ability to handle complex nonlinear
relationships in real-world datasets. In addition to improving estimation accuracy, the method also
provides substantial performance gains in terms of speed. Using GPU parallel computing, the DNN-
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based model was able to complete the state estimation process in a fraction of the time required by
the WLS method. In some cases, the speed-up was over 20,000 times faster.

The results also indicate that hyperparameter optimization (HPO) plays a crucial role in
optimizing the DNN model. The study utilizes the Tree-structured Parzen Estimator (TPE) algorithm,
which is a Bayesian HPO method. TPE proved to be more efficient than simpler optimization methods
like random search, achieving faster convergence and more accurate results. Moreover, the study
reveals that certain hyperparameters, such as batch size, learning rate, and hidden layer configuration,
are correlated with the size of the distribution network, which influences the overall accuracy of the
state estimation.

In conclusion, the DNN approach, supported by HPO, offers a more accurate and efficient
solution for DSSE in low-voltage networks compared to traditional methods, making it a valuable
tool for the integration of renewable energy sources and real-time monitoring of power systems.

The results of the hyperparameter optimization process demonstrate significant improvements
in the accuracy and performance of the neural network. In most cases, the optimal values for
hyperparameters such as batch size, learning rate, and hidden layer sizes are closely linked to the size
of the distribution network. For larger areas, the HPO algorithm enables the use of larger batch sizes,
speeding up the training process without sacrificing accuracy. This is particularly beneficial for more
complex parts of the distribution system.

The analysis shows that the FCNN model optimized with HPO outperforms other models such
as LSTM, GRU, and GNN in terms of accuracy and efficiency. The results also reveal that optimizing
the hidden layer sizes has a more significant impact on larger networks, while other parameters like
learning rate and step size optimize the training process more efficiently for larger networks. The
proposed method achieves faster computation times and better estimations compared to traditional
methods like the weighted least squares (WLS) approach.

In conclusion, the implementation of the Tree-structured Parzen Estimator (TPE) for
hyperparameter optimization in FCNN-based DSSE significantly improves the estimation accuracy
and efficiency of state estimation in low-voltage networks.
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LATTICE PHYSICS APPROACHES FOR NEURAL NETWORKS.

Abstract: Contemporary neuroscience has become an advanced field that integrates insights from various
disciplines, leading to the development of innovative conceptual frameworks influenced primarily by physics and the
study of complex systems. In this context, we recently proposed a mathematical model based on lattice field theory—an
essential paradigm in theoretical particle physics—to describe the spatiotemporal interactions within neural networks.
This brief overview outlines the fundamentals of our approach, aiming to be accessible to the broader neuroscience
community. We position our methods in context, demonstrating how they can be directly linked to experimental
parameters through familiar renormalization techniques. This summary introduces the essential concepts required for
applying lattice physics to neural networks. These methods are particularly relevant in an age of rapid advancements in
computational power, as they offer a pathway to connect observed neural dynamics with generative models grounded in
physical principles.
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Introduction:

In recent years, neuroscience has made great strides in its efforts to understand how networks
of neurons interact in both space and time, ultimately leading to cognition and behavior.
Technological advancements have significantly improved our ability to record neural activity with
high temporal resolution, allowing us to monitor the activity of hundreds of neurons simultaneously.
Despite these advances, the data gathered has yet to yield clear answers about the fundamental
mechanisms that govern neural systems, how neuronal connectivity relates to dynamics, and how
complex behaviors emerge from these interactions.

The challenge in neuroscience today is akin to the situation in particle physics before the
development of the Standard Model. Although there have been various models proposed to explain
neural activity, the field still lacks a comprehensive, mechanistic understanding grounded in the deep
physical principles that could unify these observations. The progress made in this area relies heavily
on combining experimental data, computational models, and theoretical frameworks.

One such advancement has been the application of methods from theoretical particle physics,
specifically quantum field theory (QFT), to understand systems of interacting binary variables like
the spiking activity of neurons. These mathematical approaches help to translate complex neural
interactions into terms that are grounded in universal laws of physics. The application of these
methods reduces the gap between abstract theoretical models and real experimental data, offering
new ways to link observed neural activity to models that are underpinned by physical principles.

In addition, the focus on these approaches is particularly relevant in an era marked by
significant progress in computational power. With the help of these new computational tools, it is
becoming increasingly possible to connect empirical observations of neural activity to generative
models. These models are not only based on observed data but also follow the laws of physics,
creating a new way to understand how complex neural systems function and how they relate to
physical principles.

Background:

In the field of computational neuroscience, there are currently two dominant perspectives:
manifold modeling and circuit modeling. Manifold modeling posits that neural computations can be
described by embedding the high-dimensional state space of neural dynamics into lower-dimensional
manifolds. This approach suggests that understanding neural activity is about identifying the
statistical relationships within the data without necessarily linking them to causal mechanisms. These
methods, such as principal component analysis (PCA), reduce the data into lower-dimensional spaces
that maximize variance, and they are effective for exploratory analysis and predicting experimental
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variables. However, they often provide results that lack interpretability in the context of general
principles and can lead to contradictory conclusions.

On the other hand, circuit modeling relies on the assumption that the connectivity between
neural units forms the foundational mechanism for brain function. This approach integrates realistic
biophysical parameters like membrane potentials and cell types, allowing for the prediction of neural
activity through a set of specific connections. While successful in modeling certain neural behaviors,
such as stimulus selectivity and neural dynamics, circuit models are often criticized for being highly
parameter-dependent, making it difficult to scale them to larger networks. These models also face
challenges in explaining mixed selectivity and other phenomena that involve multiple, interacting
variables.

Neither approach fully integrates with general physical principles, which creates a gap in our
understanding. One promising method that attempts to bridge this gap is neural field theory (NFT).
NFT models large-scale neural activity using differential equations and considers anatomical and
physiological details, offering a more comprehensive way to describe brain dynamics. However, like
other approaches, it faces challenges in linking the various scales at which neural processes occur.

In the realm of physics, the most successful models have applied statistical physics principles
to neural networks. For example, the Amari-Hopfield model, a prominent framework in
computational neuroscience, draws parallels between the energy function in neural systems and the
energy in spin systems from magnetic physics. This connection allows for the use of stochastic
dynamics and bifurcation theory to describe neural behavior. Yet, these models often struggle with
exact solutions, particularly when dealing with large systems, and the challenge of linking them to
empirical data remains.

In response to these limitations, some researchers have argued that quantum field theory
(QFT) could provide a more robust framework for understanding neural systems. By treating neural
interactions as systems of discrete binary variables, much like the interactions of particles in physics,
this approach could offer a more direct connection between theoretical models and experimental data.

Preliminaries:

To dive deeper into the framework we propose, let’s briefly discuss the Lagrangian description
of a dynamic system, a key component of our model. The Lagrangian approach, while less well-
known outside of physics, offers an essential perspective. Unlike other methods, such as Newtonian
mechanics, the Lagrangian framework focuses on energy, generalized coordinates, symmetries, and
conservation laws. This method is particularly useful for complex systems with many degrees of
freedom, as it unifies a wide range of physical phenomena, from classical mechanics to
electromagnetism and general relativity.

At its core, the Lagrangian represents the difference between kinetic and potential energy. The
action, which is the integral of the Lagrangian over time, encapsulates the dynamics of the system.
The principle of least action, one of the fundamental laws of physics, asserts that the path a system
takes between two states minimizes the action. This idea, which parallels Newton's laws of motion,
is a powerful tool for describing the evolution of physical systems.

In the context of neuroscience, most foundational models do not yet incorporate the principle
of least action. While some indirect evidence exists supporting the idea, a systematic Lagrangian
approach to neural dynamics has not yet been fully explored. Reimagining neural circuits using this
framework would allow neuroscience to engage more directly with the broader theoretical landscape
of physics, borrowing analytical techniques and numerical methods from these fields. If physics
consistently operates under this principle, it seems only logical to extend this approach to neural
circuits as well.

Fundamentals:

Our proposed model introduces a shift from continuous spacetime to a discrete lattice,
converting fields into variables defined at specific lattice sites at discrete time steps. This approach is
grounded in lattice field theory (LFT), a standard computational technique in quantum field theories
(QFT), especially useful when analytical methods are not feasible. The lattice formalism guarantees
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the preservation of symmetries and conservation laws, even when dealing with a discrete
approximation of continuous space.

We specifically focus on binary activity within neural networks. Neurons are represented as
binary variables—either 0 (inactive) or 1 (active)—which reflects their spiking behavior. This
simplification, though basic, captures the essence of neural interactions in a compact form. Each
neuron in the network is mapped to a lattice vertex, and the temporal evolution of the neural network
is discretized over time. This allows us to model the spiking activity of neurons in a lattice structure,
where each site represents a neuron, and the interactions between neurons are represented as
interactions between the corresponding lattice points.

The time intervals between computational steps are chosen to be the smallest possible value,
corresponding to the duration of a spike. In this framework, the minimum relevant timescale is tied
to the refractory period of the neurons, which typically lasts about 1 millisecond. The activity of the
neurons is then captured in a binary array, known as the "kernel,"” where each row represents a neuron,
and each column represents a time step. This kernel contains the temporal sequence of spikes recorded
for a network of neurons during an experiment.

The spatial correlations between neurons are captured by a matrix that quantifies pairwise
correlations over the entire time period, while the temporal correlations represent how neurons'
spiking patterns relate to each other across time. These matrices, known as the hypermatrix, allow us
to model the collective behavior of neural activity as a set of spatiotemporal patterns, making it easier
to analyze and interpret the interactions within the network.

Modeling Neural Networks with the Action:

In our framework, the evolution of neural dynamics is modeled as a process influenced by
past states, akin to a quantum system with memory. This approach, while initially seeming
unconventional, simplifies the problem remarkably. The classical (non-quantum) evolution of a
system can always be derived from the quantum version, meaning that our model operates within a
broad and flexible theoretical framework.

We treat the neural network as a discrete system of interacting binary fields, analogous to
qubits in quantum mechanics. This simplification allows us to apply lattice-based statistical
mechanics to describe neural interactions, enabling the use of powerful methods from quantum field
theory (QFT) to solve the system. The challenge of determining the temporal evolution of such a
system can be tackled through statistical mechanics techniques applied to the lattice, providing us
with an efficient way to study complex neural networks.

The action function in this model represents the system's behavior over time. Just as in particle
physics, the action function defines how the system evolves by balancing kinetic and potential
energies. In the case of neural networks, the action function encodes the collective behavior of
neurons over time, capturing both the spatial and temporal interactions between them. By computing
the action of the system, we can understand how the network of neurons interacts, how information
Is transmitted, and how these interactions change over time.

Renormalization and Effective Theories:

One of the key challenges in relating theory to experimental data is the concept of
renormalization, which allows us to simplify complex systems by focusing on relevant scales. In
neural networks, this process involves simplifying the system's behavior at different spatial or
temporal scales while retaining the essential dynamics. Renormalization allows us to connect
microscopic details (such as individual neurons or synapses) with macroscopic observations (such as
large-scale brain activity) without needing to model every detail of the system.

In our framework, renormalization is applied by decimating the lattice, essentially averaging
over smaller-scale details to produce a simplified model that still captures the essential features of the
neural network. This decimation process is particularly useful when dealing with experimental data
that cannot capture every individual neuron’s behavior but can provide insights into the collective
activity of larger groups of neurons. By applying renormalization, we can connect the data recorded
from experiments (such as electrode arrays) with the theoretical model, providing a more accurate
and comprehensive understanding of neural interactions.
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For example, when analyzing data from a Utah array, which samples activity from a grid of
electrodes, the neural dynamics can be modeled as a decimated lattice. This method allows us to treat
the entire minicolumn as a single unit, simplifying the modeling process while still capturing the
relevant dynamics. The use of renormalization by decimation ensures that we focus on the most
significant interactions in the system, leading to a more manageable and interpretable model.

Learning Neural Interactions from Data:

One of the main goals of this approach is to learn about the underlying interactions within a
neural network from experimental data. By measuring quantities like average spiking activity and
correlations between neurons, we aim to infer the neural interactions that govern the observed
dynamics. This inverse problem, where we aim to infer the model parameters from experimental data,
is central to understanding how neural circuits function.

To solve this problem, we use statistical models like maximum entropy models, which provide
a way to derive the parameters of the network from the observed data. These models make minimal
assumptions about the system, ensuring that the derived parameters capture the true underlying
interactions. By applying these models to neural data, we can learn about the connectivity and
dynamics of the network.

One important aspect of our model is its ability to capture both the spatial and temporal aspects
of neural interactions. Unlike traditional maximum entropy models, which focus on the spatial
correlations of neural activity, our model includes a kinetic term that captures the temporal evolution
of the system. This allows us to study how neurons influence each other not only in space but also
over time, providing a more complete description of neural dynamics.

Applications and Future Directions:

The framework we propose offers exciting possibilities for studying neural systems, both at
the level of individual neurons and across large networks. By integrating data from multiple sources,
including electrophysiological recordings, imaging, and behavioral data, we can build more
comprehensive models of brain activity. These models can be used to simulate neural dynamics,
predict neural responses to different stimuli, and explore how changes in connectivity or dynamics
affect brain function.

The approach also opens up new possibilities for generative modeling of neural activity. By
using the principles of lattice field theory, we can generate synthetic neural data that mimics the
observed dynamics of real neural networks. This could be useful for testing hypotheses about neural
function and for developing new techniques for analyzing neural data. Additionally, the ability to
model neural networks within a physical framework could lead to a deeper understanding of the
brain’s computational principles, potentially unlocking new insights into cognition, learning, and
behavior.

The flexibility of our approach makes it adaptable to a wide range of neural systems, from
small circuits of neurons to large-scale brain networks. By refining the renormalization techniques
and incorporating more sophisticated models of neural activity, we can continue to improve our
understanding of how the brain works, both in health and disease.

LFT and Biohybrids Networks:

The recent progress in integrating biological brain tissue with bio-inspired electronics has
opened exciting new avenues for understanding and utilizing neural systems. These advancements
have led to the development of brain organoids and neuromorphic systems, which represent
significant steps forward in both biological research and technology. Brain organoids—miniaturized,
simplified versions of the brain—allow researchers to model neural networks in a laboratory setting,
while neuromorphic systems are electronic devices designed to simulate the brain's computational
processes.

The integration of biological neurons with artificial systems, also known as biohybrids, is a
particularly promising area of research. The potential to combine the flexibility and learning
capabilities of biological networks with the precision and efficiency of artificial systems could lead
to novel applications in both neuroscience and technology.
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Our framework, based on lattice field theory (LFT), could play a critical role in the
development of these biohybrid systems. By using LFT to model neural dynamics in these systems,
we can more accurately simulate how artificial and biological components interact. This could lead
to more efficient designs for neuromorphic chips, which, like the human brain, process information
only when events (such as spikes) occur. Such chips could be energy-efficient while maintaining the
adaptability and learning capabilities of biological neural networks. LFT offers a powerful tool to
describe the dynamics of these biohybrids, as it allows us to model their activity in terms of discrete
units (binary states) and map these onto experimental data.

Moreover, by applying LFT in this context, we can explore how artificial systems, such as
neuromorphic chips, can be fine-tuned based on the activity of recorded biological neurons during
both the design and testing phases. This creates the potential for more efficient and biologically
plausible artificial neural networks, which could have applications ranging from brain-machine
interfaces to advanced Al systems.

Limitations of the Study:

While our framework offers numerous advantages, there are several open challenges that need
to be addressed before it can be fully implemented. One of the main challenges lies in linking the
effective theory, which describes the neural network at larger scales, with the microscopic theory that
focuses on individual neurons. This requires the use of renormalization procedures, which are still in
the early stages of development. A more detailed understanding of how to apply these procedures
across different scales will be crucial for advancing the framework.

Currently, we employ approximations, such as the two-body truncation, to simplify the
system. This approach is valid when covariances between neurons are small, but it may not hold in
all cases. Additional approximations, such as stationary conditions truncation, are applied when
synaptic connections remain relatively constant over time. These approximations are valid for most
neurophysiology experiments, where the scale of changes in brain activity is manageable. However,
in experiments with highly dynamic synaptic properties or networks with rapidly changing
connectivity, these simplifications may not be sufficient.

Another challenge is mapping the observed dynamics of the neural system to its underlying
anatomical structure. While we assume that the anatomical structure of neurons and synapses is
reflected in the observed dynamics, the exact correspondence between the coupling parameters and
the physical structures is not trivial. In some cases, it may be difficult to determine these structures
purely from observable data, especially when there is insufficient precision in the measurements.

Finally, like many models in computational neuroscience, our framework faces the challenges
associated with inverse problems—problems where the goal is to infer the underlying parameters of
a system from limited or noisy data. The large number of parameters in the model, combined with
the relatively small amount of experimental data, makes this task particularly challenging. However,
advances in computational methods and machine learning techniques may help address these issues
in the future, enabling more accurate inference from experimental data.

Theoretical Insights:

At the heart of our model lies the concept of the action function, which is used to describe the
dynamics of neural networks. The action is the core of the system’s evolution and is formulated in
terms of the Lagrangian, which is the difference between the system's kinetic and potential energy.
In the case of neural networks, the action incorporates both the interactions between neurons and their
temporal evolution, providing a unified framework for understanding the behavior of large-scale
neural systems.

To compute the action, we utilize a statistical field theory approach, where the action is
expanded as a Taylor series. This allows us to describe the interactions in a neural network at multiple
levels of complexity, from one-vertex interactions (simple neuron activity) to higher-order
interactions (complex patterns of neural firing). The mathematical formalism enables us to analyze
how the system’s state evolves over time, providing insights into how different parts of the network
influence one another and how these interactions shape brain function.
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By focusing on binary variables for neuron activity (spike or no spike), we simplify the
description of neural interactions, making the model more computationally tractable. This
simplification does not undermine the complexity of the system but rather allows us to capture its
essential dynamics in a manageable form. As we continue to refine the model, we can extend it to
account for more complex neurophysiological signals, such as local field potentials (LFPs) or multi-
unit activity (MUA), providing a more comprehensive description of neural function.

Renormalization and Multiscale Analysis:

One of the most powerful features of our framework is its ability to integrate renormalization
techniques, which are essential for scaling up the model from individual neurons to large-scale
networks. Renormalization allows us to “zoom in™ or “zoom out" on different parts of the system,
focusing on the relevant scales while ignoring the less important details. This process is particularly
useful when dealing with experimental data, which often cannot capture every neuron in a network
but can provide valuable insights into the collective behavior of the network as a whole.

In practice, we apply a renormalization-by-decimation approach, where we simplify the
system by integrating out the small-scale details (such as individual neurons) and focusing on the
larger-scale patterns (such as neural minicolumns). This method preserves the essential dynamics of
the system while making the model more computationally feasible.

For example, when analyzing data from a Utah array, which records neural activity from a
grid of electrodes, we can model the neural dynamics as a decimated lattice, where each electrode
corresponds to a larger group of neurons (a minicolumn). This decimation process allows us to focus
on the most relevant interactions within the neural network while simplifying the overall model. By
applying these techniques, we can make accurate predictions about neural activity across different
spatial and temporal scales, providing valuable insights into brain function.

Learning Neural Interactions from Data:

Understanding neural network interactions involves determining how the activity of neurons
Is organized and how these interactions contribute to overall brain function. To achieve this, we must
infer the underlying neural connections from experimental data. This is known as the inverse problem,
where the goal is to extract model parameters (such as coupling strengths between neurons) based on
observed neural activity. This process is crucial for advancing our understanding of how neural
networks operate and for developing accurate models of brain activity.

One approach to solving the inverse problem is through the use of maximum entropy models.
These models maximize the entropy, or uncertainty, of a system subject to certain constraints,
ensuring that the inferred model makes the fewest assumptions about the network's behavior. This
approach has been applied in neuroscience to infer the spatial couplings between neurons, but it often
assumes that temporal dynamics are not explicitly modeled. While these models can capture basic
interactions, they do not account for the temporal evolution of the system, which is a critical aspect
of neural dynamics.

Our framework addresses this limitation by incorporating a kinetic term in the model. This
term explicitly accounts for the temporal evolution of the system, allowing the model to capture both
the spatial and temporal aspects of neural interactions. By doing so, we can infer not only how neurons
are connected but also how they influence each other over time. This extended model can be applied
to various types of neural networks, whether they exhibit asynchronous activity, oscillations, or other
complex dynamic behaviors.

For example, the model can be used to simulate neural time series, estimate the coupling
parameters from experimental data, and compare the results with theoretical predictions. It can also
be used to study different dynamical regimes of the system, such as oscillatory or chaotic dynamics,
by analyzing how the coupling parameters change under different conditions. This approach allows
us to gain insights into how neural circuits operate, how their dynamics are influenced by external
factors, and how these dynamics relate to the brain’s functional behavior.

Applications and Future Directions:

The model we present has a broad range of applications, both in basic neuroscience research
and in more applied fields, such as neuroprosthetics and brain-machine interfaces. One promising
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area is the study of large-scale brain networks. By using the principles of lattice field theory (LFT),
we can model these networks at multiple levels of organization, from individual neurons to whole
brain regions. This multiscale approach enables a more comprehensive understanding of how
different brain regions communicate and cooperate to produce complex cognitive functions.

Additionally, our framework could play a key role in the development of generative models
for neural activity. These models would allow researchers to simulate the neural activity of large
networks based on the observed dynamics of real systems. By comparing these simulations with
experimental data, we can test hypotheses about neural function and improve our understanding of
how the brain processes information. Furthermore, these generative models could be used to develop
new tools for analyzing neural data, providing insights into the mechanisms underlying cognition,
learning, and behavior.

In the realm of artificial intelligence, our approach could be used to improve the design of
neuromorphic systems—artificial neural networks that mimic the structure and function of biological
brains. By applying LFT to neuromorphic circuits, we could optimize their design to better replicate
the dynamics of real neural systems. This could lead to more efficient and adaptable artificial systems,
with applications in areas such as robotics, machine learning, and brain-computer interfaces.

Another exciting direction is the integration of our model with biological systems, such as
brain organoids and biohybrids. By using LFT to model the neural dynamics in these systems, we can
explore how artificial and biological components interact. This could pave the way for the
development of hybrid systems that combine the strengths of both biological and artificial networks,
offering new opportunities for both neuroscience research and the creation of bio-inspired
technologies.

Conclusion:

The framework we have developed represents a powerful and versatile tool for studying neural
dynamics. By applying lattice field theory (LFT) to neural networks, we can gain new insights into
the complex interactions that underlie brain function. Our approach allows us to model neural systems
at multiple scales, from individual neurons to large-scale brain networks, and provides a more unified
and physically grounded understanding of neural dynamics.

While there are still challenges to overcome—such as refining renormalization techniques and
addressing the limitations of inverse problems—the potential of this framework is vast. It opens up
new possibilities for both basic neuroscience and applied fields, offering a path forward for more
accurate models of brain activity, more effective brain-machine interfaces, and a deeper
understanding of cognition and behavior.

As computational power continues to advance, we expect that these models will become even
more sophisticated and capable of addressing the growing complexity of neural systems. By linking
experimental data to physical principles, our approach provides a novel perspective on how the brain
operates and how it can be modeled, offering exciting prospects for the future of neuroscience and
neuroengineering.
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ARTIFICIAL NEURAL NETWORKS FOR OPTIMIZING DISTRICT HEATING
NETWORKS.

Abstract: Accurate forecasting of heat demand is crucial for optimizing the energy efficiency of district heating
networks (DHNSs), which are subject to challenges such as fluctuating weather, unpredictable user behavior, and varying
energy supply. This study assesses the performance of Artificial Neural Networks (ANNS), including advanced models
like Long Short-Term Memory (LSTM) Networks, Convolutional Neural Networks (CNNs), and the Temporal Fusion
Transformer (TFT), compared to the traditional SAR-IMAX statistical model. The evaluation focuses on each model's
capacity to predict varying heat demand profiles and deliver interpretable forecasts with optimization techniques,
particularly highlighting the importance of clear confidence intervals. Using a year’s worth of data from the Stiftung
Liebenau DHN, which integrates multiple energy sources such as Combined Heat and Power (CHP), biomass, and
natural gas, along with diverse heat sinks like residential buildings and greenhouses, the study finds that while the CNN
model achieves the lowest Mean Absolute Percentage Error (MAPE)—27% for both summer and winter, and 17% for
winter alone—accuracy is notably influenced by data volatility and irregularities. Despite this, the models successfully
capture general trends, though predicting demand peaks and fluctuations remains challenging. An economic assessment
reveals that these predictive methods significantly improve energy efficiency and provide economic advantages due to
their low initial investment requirements.

Keywords: heat demand, forecasting, district heating, artificial neural networks, energy efficiency, prediction
accuracy, economic analysis, confidence intervals

Introduction:

The accurate forecasting of heat demand is crucial for optimizing the operation of district
heating networks (DHNSs), which face challenges such as variable weather, fluctuating user behavior,
and energy availability. To address this, the study examines the effectiveness of various artificial
neural network (ANN) models, including Long Short-Term Memory Networks (LSTM),
Convolutional Neural Networks (CNN), and the Temporal Fusion Transformer (TFT), and compares
them to the traditional statistical SAR-IMAX model. These models are evaluated for their ability to
predict diverse heat demand profiles and produce interpretable forecasts with optimization strategies,
especially focusing on understandable confidence intervals. Using data from Stiftung Liebenau DHN,
which incorporates multiple energy sources such as Combined Heat and Power (CHP), biomass, and
natural gas, and various heat sinks including residential buildings and greenhouses, the study finds
that the CNN model, while achieving the lowest Mean Absolute Percentage Error (MAPE) of 27%
for both summer and winter and 17% for winter alone, is significantly influenced by data volatility
and irregularities. However, the models successfully capture overall trends, though predicting
demand peaks and fluctuations proves challenging. An economic analysis indicates that applying
these forecasting methods can significantly improve energy efficiency and provide economic benefits
due to low investment costs.

The study aims to enhance the forecasting of heat demand for district heating networks
(DHNSs) by applying advanced Artificial Neural Network (ANN) models. The models assessed
include Long Short-Term Memory (LSTM) Networks, Convolutional Neural Networks (CNN), and
Temporal Fusion Transformers (TFT). These models were compared against the statistical SAR-
IMAX model to evaluate their effectiveness in predicting heat demand and providing reliable,
interpretable forecasts. The key focus of the research is on the models' ability to offer optimization
strategies with clear confidence intervals. To test the models, data from Stiftung Liebenau DHN,
collected over the course of a year, was used. This data set included multiple energy sources, such as
Combined Heat and Power (CHP), biomass, and natural gas, and encompassed a wide range of heat
sinks, including residential buildings, greenhouses, and other facilities.

Despite the CNN model delivering the best performance, with a Mean Absolute Percentage
Error (MAPE) of 27% for both summer and winter and 17% for winter alone, the accuracy of the
models was influenced by the volatility and irregularities present in the data. While the models could
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capture general trends, they faced difficulties in predicting peak demands and fluctuations.
Nevertheless, an economic analysis revealed that the application of these predictive models could
significantly enhance energy efficiency. Moreover, their relatively low investment costs mean that
they offer substantial economic benefits.

The study highlights the importance of accurate forecasting in optimizing the operation of
district heating networks (DHNSs), particularly in the context of 4th generation systems. These
networks, which deliver heat from central sources to various buildings, are essential for urban energy
infrastructures. The transition towards 4th generation systems involves integrating renewable energy
sources, improving the efficiency of heat distribution, and adapting to varying heat demands. One of
the key challenges of such systems is the integration of decentralized and fluctuating renewable
energy sources, as well as the need for bidirectional heat transfer with buildings, efficient energy
storage, and low-temperature operations.

Given the complexity of these systems and the diverse consumers they serve, it is crucial to
develop advanced predictive techniques that can process large volumes of data and account for
numerous variables influencing heat demand. By using predictive models, energy stakeholders can
better anticipate heating requirements, leading to more efficient energy distribution, reduced
operational costs, and greater energy sustainability. Traditional statistical methods for heat load
forecasting have evolved into more sophisticated Artificial Neural Networks (ANNSs), which offer
improved accuracy and adaptability in modeling complex, nonlinear relationships in heating demand
patterns. The growing availability of data from smart meters and 10T devices has significantly
enhanced the capabilities of ANNs in this domain. These advanced models can process real-time data
and respond more dynamically to changing conditions, ultimately contributing to more efficient and
sustainable energy systems.

The paper explores various machine learning methods for time series forecasting, with a
particular focus on Artificial Neural Networks (ANNs) and Deep Neural Networks (DNNs). These
techniques are increasingly being used to predict thermal load for district heating networks (DHNS),
which involves forecasting both individual heat consumers and the overall demand of the entire
network. The study highlights how the growing availability of data, as well as advances in
computational power, have made traditional forecasting methods less effective compared to Al-based
approaches.

Neural network architectures that include recurrent components, such as Long Short-Term
Memory (LSTM) networks, are often employed for handling sequential data, which is a key feature
of heat demand patterns. Other advanced architectures, such as Temporal Convolutional Networks
(TCNs), are also utilized for improving forecasting accuracy. Moreover, hybrid approaches
combining DNNs with traditional time series analysis methods are emerging as powerful solutions
for improving prediction accuracy.

The research addresses the practical challenges of applying Artificial Neural Networks
(ANNS) in real-world district heating network (DHN) applications. While ANNs show great promise
in predicting heat demand, their real-world implementation faces difficulties due to the diversity of
consumers within a DHN and the insufficient availability of high-quality data. To improve the
accuracy of predictions, the study emphasizes the need for uncertainty estimates, model
interpretability, and the integration of advanced machine learning techniques.

The study compares two standard ANN architectures: Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks. It also explores two different approaches
for multi-step predictions—single-shot and autoregressive prediction. These approaches are
evaluated to determine which is more suitable for forecasting heat demand across different
consumers, including residential buildings, offices, and greenhouses. Additionally, the Temporal
Fusion Transformer (TFT) network is considered for comparison, as it is specifically designed for
time series forecasting. The research further explores how these models can be integrated into control
algorithms to enhance operational efficiency.

The paper uses the Stiftung Liebenau DHN, a small local community DHN in Meckenbeuren,
Germany, as a case study. This DHN features multiple heat sources, including Combined Heat and
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Power (CHP), natural gas, and biomass, as well as various heat sinks such as residential buildings,
workshops, greenhouses, and medical facilities. Through this case study, the paper not only evaluates
the technical aspects of implementing ANNs for heat demand forecasting but also addresses the real-
world challenges of data collection, processing, and integration into existing DHN systems. The
results suggest that ANNSs can significantly improve heat demand forecasting accuracy, but practical
challenges such as data accessibility and the integration of predictive models into control systems
remain areas for further development.

The paper examines the various artificial neural network (ANN) models employed for
forecasting heat demand in district heating networks (DHNS). The study assesses the effectiveness of
these models, including Long Short-Term Memory (LSTM) networks, Convolutional Neural
Networks (CNNSs), and the Temporal Fusion Transformer (TFT), for accurately predicting heat load
profiles and providing reliable forecasts. The models are compared to the statistical SAR-IMAX
model to evaluate their relative performance in real-world applications.

Using a year’s worth of data from Stiftung Liebenau DHN, which encompasses multiple
energy sources like Combined Heat and Power (CHP), biomass, and natural gas, the study
demonstrates the potential of these Al-based methods. The data also includes diverse heat sinks, such
as residential buildings and greenhouses, which add complexity to the heat demand forecasting
process. The CNN model, despite achieving the lowest Mean Absolute Percentage Error (MAPE) of
27% for both summer and winter, and 17% for winter alone, faces challenges in prediction accuracy
due to the volatility and irregularity of the data. Nonetheless, the models successfully capture the
overall heat demand trend, though they struggle to predict peaks and fluctuations in demand. The
economic analysis further suggests that, despite the challenges, applying these predictive models
could significantly improve energy efficiency while offering economic benefits due to their relatively
low investment costs.

The paper focuses on the practical implementation and evaluation of Artificial Neural
Networks (ANNSs) for forecasting heat demand in district heating networks (DHNSs). The study
specifically explores several ANN architectures, including Long Short-Term Memory (LSTM)
networks, Convolutional Neural Networks (CNNSs), and the Temporal Fusion Transformer (TFT).
These models are tested against the traditional SAR-IMAX statistical model to assess their relative
effectiveness in predicting heat load and providing actionable forecasts.

The research uses data from the Stiftung Liebenau DHN, a local district heating network
located in Meckenbeuren, Germany. This data spans one year and incorporates diverse energy
sources, such as Combined Heat and Power (CHP), biomass, and natural gas, as well as a variety of
heat sinks, including residential buildings and greenhouses. These diverse components of the DHN
provide a complex landscape for heat demand forecasting, making the role of Al models particularly
important. The study reveals that while the CNN model demonstrates the lowest Mean Absolute
Percentage Error (MAPE) — achieving 27% for both summer and winter, and 17% for winter alone
— prediction accuracy is notably affected by data volatility and irregularity.

Despite these challenges, the Al models effectively capture the general heat demand trends,
though they struggle to predict sharp demand peaks and fluctuations. The paper further explores the
economic implications of using these predictive models, concluding that they can significantly
enhance energy efficiency within DHNs, offering potential economic benefits due to their low initial
investment costs. The results underscore the promise of Al in optimizing heat demand forecasting,
despite the complexities of real-world data.

The study highlights the significance of accurate forecasting for the optimal operation of
district heating networks (DHNS), particularly as these systems evolve towards more sustainable and
flexible models. Traditional DHNs, which have been central to urban heating infrastructures, are now
transitioning into 4th generation systems that incorporate renewable energy sources, lower
temperature operations, and advanced control strategies. These modern systems face unique
challenges, including integrating decentralized and variable renewable energy inputs, managing
bidirectional heat transfer with buildings, and customizing heat supply to meet dynamic demands.
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As the complexity of these networks grows, advanced predictive techniques become essential.
Such techniques must handle large volumes of diverse data and account for the various factors
influencing heat demand, including weather conditions, user behavior, and the availability of energy
sources. By utilizing predictive models, energy providers can anticipate heating needs with greater
accuracy, optimizing energy distribution, reducing operational costs, and achieving long-term energy
efficiency goals. Predictive modeling helps balance supply and demand, manage peak loads, and
integrate renewable energy more effectively, making it an essential tool for modern DHNs. The
adoption of Artificial Neural Networks (ANNSs) has emerged as a significant advancement, as these
models can capture complex, nonlinear relationships within heat demand data, something that
traditional statistical models struggle with. With the increasing availability of real-time data from
smart meters and loT devices, ANNs can process this data to improve the responsiveness and
adaptability of DHNs, ultimately contributing to more efficient and sustainable heating systems.

The research delves into the application of Artificial Neural Networks (ANNSs) for heat
demand forecasting in district heating networks (DHNSs). It evaluates several ANN architectures,
including Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs),
and Temporal Fusion Transformers (TFTs), with the goal of enhancing the accuracy of heat load
predictions. These models are compared against the traditional SAR-IMAX statistical model to assess
their effectiveness in real-world applications.

Data from the Stiftung Liebenau DHN, which spans a year and includes a mix of energy
sources like Combined Heat and Power (CHP), biomass, and natural gas, as well as various heat sinks
such as residential buildings and greenhouses, is used for testing. The results show that while the
CNN model achieves the lowest Mean Absolute Percentage Error (MAPE)—27% for both summer
and winter, and 17% for winter alone—its performance is still affected by the volatility and
irregularity in the data. However, despite this, the models successfully capture the general trend in
heat demand. The study also finds that predicting demand peaks and fluctuations remains a challenge.
Additionally, an economic analysis indicates that, despite the issues with data volatility, the use of
these predictive models can significantly enhance energy efficiency and provide economic benefits
due to their relatively low investment costs.

The study investigates the practical application of Artificial Neural Networks (ANNSs) for
forecasting heat demand in district heating networks (DHNs), with a focus on improving operational
efficiency. The research compares multiple ANN architectures, including Long Short-Term Memory
(LSTM) networks, Convolutional Neural Networks (CNNs), and Temporal Fusion Transformers
(TFTs), to traditional forecasting methods like the SAR-IMAX model. The goal is to assess how well
these models predict heat demand and provide reliable forecasts that can aid in the optimization of
DHN operations.

Using a year's worth of data from Stiftung Liebenau DHN, which integrates various energy
sources such as Combined Heat and Power (CHP), biomass, and natural gas, as well as diverse heat
sinks including residential buildings, workshops, and greenhouses, the study evaluates the
performance of these Al-based models. Despite the CNN model achieving the lowest Mean Absolute
Percentage Error (MAPE) of 27% for both summer and winter, and 17% for winter alone, the
accuracy is still significantly affected by the irregularities and volatility present in the data. Although
the models effectively capture overall heat demand trends, predicting fluctuations and demand peaks
proves to be a more challenging task. However, the paper underscores that the use of these predictive
models can still lead to substantial improvements in energy efficiency, offering clear economic
benefits due to their relatively low initial investment costs. The research highlights the promise of
ANNs for optimizing heat demand forecasting, even as challenges related to data volatility and
prediction accuracy remain.

The paper explores the application of Artificial Neural Networks (ANNS) in forecasting heat
demand within district heating networks (DHNs), aiming to improve operational performance and
energy efficiency. It specifically evaluates several types of ANN architectures, including Long Short-
Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs), and Temporal Fusion
Transformers (TFTs), in comparison with the traditional SAR-IMAX statistical model. The primary
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objective is to determine how well these models can predict heat demand and provide accurate,
interpretable forecasts for optimal DHN management.

The study uses data collected over the course of one year from Stiftung Liebenau DHN, which
involves various energy sources like Combined Heat and Power (CHP), biomass, and natural gas, as
well as multiple heat sinks such as residential buildings, greenhouses, and workshops. The results
indicate that while the CNN model achieves the lowest Mean Absolute Percentage Error (MAPE)—
27% for both summer and winter, and 17% for winter alone—the accuracy of predictions is notably
influenced by the volatility and irregularities in the data. Nevertheless, the models manage to capture
the general trends in heat demand, even though predicting demand fluctuations and peak periods
proves challenging.

Despite these challenges, the research concludes that the implementation of these predictive
models can significantly enhance energy efficiency. The economic analysis suggests that these
models offer substantial benefits, particularly due to their relatively low initial investment costs.
While the models are not flawless, their ability to improve energy forecasting makes them a promising
tool for the optimization of DHN operations.

Conclusions

The study demonstrates the potential of Artificial Neural Networks (ANNS) in improving heat
demand forecasting for district heating networks (DHNSs). The application of advanced ANN models,
including Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs),
and Temporal Fusion Transformers (TFTs), offers significant advantages over traditional statistical
methods like the SAR-IMAX model, particularly in terms of capturing complex, nonlinear
relationships within the heat demand data.

Despite challenges such as data volatility and irregularity, the models successfully forecast
general trends in heat demand, although predicting demand peaks and fluctuations remains a
challenge. Among the ANN models, the CNN architecture showed the best performance, achieving
the lowest Mean Absolute Percentage Error (MAPE), particularly in the summer and winter seasons.
However, the overall accuracy of these models is influenced by the inherent variability of the data.

From an economic perspective, the study finds that the application of these predictive models
can result in substantial improvements in energy efficiency. The relatively low investment costs
associated with implementing these models offer clear economic benefits, especially in terms of
optimizing energy distribution and reducing operational costs. While further refinement is needed to
enhance their predictive accuracy, these models hold significant promise for the future of DHN
operation, contributing to more sustainable and resilient energy systems.

In conclusion, the integration of ANNs into DHN management has the potential to
revolutionize heat demand forecasting, providing not only operational advantages but also economic
and environmental benefits. The continued development and refinement of these models will play a
crucial role in achieving the broader goals of energy efficiency and sustainability in district heating
systems.
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QUALITY EVALUATION OF POLISH TIMESCALE FORECASTING USING GMDH
NEURAL NETWORK.

Abstract: The article discusses the results of evaluating the effectiveness of a forecasting system that employs a
Group Method of Data Handling (GMDH) neural network. This system was used to forecast the Polish Timescale
(UTC(PL)) based on hydrogen maser (HM) technology. It highlights how the use of this forecasting system for
implementing the UTC(PL) national timescale can yield a quality comparable to that of the best global timescales. The
study presents the forecasting outcomes for UTC(PL) based on two prepared time series (TS1 and TS2), with a
comparison to the UTC - UTC(k) values for the same scale. Excellent forecasting performance was achieved in cases 5
and 6, for both TS1 and TS2, as demonstrated by the forecast quality metrics. These findings indicate that the proposed
system ensures the UTC(PL) accuracy on par with the top international timescales. The results are expected to encourage
National Metrology Institutes (NMIs) lacking caesium fountain capabilities to adopt the UTC(K) steering system.

Keywords: forecasting, GMDH, neural network, UTC(PL), hydrogen maser, timescale, accuracy, National
Metrology Institutes

Introduction:

The article discusses the effectiveness of a forecasting system for the Polish Timescale
(UTC(PL)), using the Group Method of Data Handling (GMDH) neural network and hydrogen maser
(HM) technology. The research aims to show that applying this forecasting system to UTC(PL) can
achieve timescale quality comparable to the best timescales worldwide. Forecasting results are
presented for two time series, TS1 and TS2, and compared to UTC - UTC(K) values. The results
demonstrate excellent forecasting quality, with cases 5 and 6 achieving very good results, as
confirmed by forecast quality measures. The research concludes that the developed system ensures
UTC(PL) accuracy on par with the top global timescales, supporting its adoption by National
Metrology Institutes (NMIs) lacking caesium fountains.

The research presented in the article focuses on the effectiveness of a forecasting system for
the Polish Timescale (UTC(PL)), which is based on a GMDH (Group Method of Data Handling)
neural network. This system, designed for the Polish national timescale, is implemented with a
hydrogen maser (HM). The primary goal of the study is to demonstrate that the use of this forecasting
system can ensure that the quality of the Polish Timescale is comparable to that of the best global
timescales.

The forecasting system operates on two specially prepared time series, TS1 and TS2. These
series, along with the forecasted values for the Polish Timescale, are compared with the UTC -
UTC(K) values for this scale. The analysis confirms the high quality of the forecasts, particularly for
cases 5 and 6, where the system showed a high degree of accuracy. This is evident from the forecast
quality metrics and the minimal discrepancies observed between the predicted and actual values.
These findings suggest that the developed forecasting system allows for the accurate control and
correction of the UTC(PL) national timescale, placing it among the best-performing timescales
globally.

The research is particularly significant for National Metrology Institutes (NMIs) that lack
caesium fountains, as it shows that adopting the UTC(K) steering system based on this neural network
approach could allow them to achieve similar high-quality results at a lower cost.

The second key factor influencing the forecasting quality is the quality of the prepared input
data. This aspect is heavily impacted by the method of data preparation as well as the quality of the
clock that realizes the UTC(K) timescale and its corresponding steering system. The author conducted
extensive research focused on improving the data preparation process, exploring various methods to
enhance the forecasting quality. These studies were presented in several works [1-12], and the
findings indicate that further improvements in data handling can lead to even better results.

In the specific context of UTC(PL) forecasting, the method proposed by the author for
generating UTC(k) scale forecasts using a GMDH neural network has been successfully applied. This
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approach uses data from hydrogen masers and commercial caesium atomic clocks to implement the
UTC(PL) timescale, aiming to achieve forecast accuracy comparable to the highest-performing
timescales. Notably, the forecasting system has been successfully integrated into the Polish Timescale
UTC(PL), confirming its potential for widespread application in national metrology institutes
(NMIs). This approach allows for continuous improvement and refinement of the timescale
forecasting process, making it more efficient and reliable in real-time operations.

The research conducted on the Polish Timescale (UTC(PL)) forecasting using the GMDH
neural network (NN) has led to the development of a forecasting system for UTC(k) timescales, as
described in the works of Sobolewski and others (2017). This system has been tested using the Polish
Timescale, which is based on a VCH-1003M hydrogen maser, selected for its precision and stability
among several available clocks at the GUM (Central Office of Measures). The goal of this work is to
demonstrate that the forecasting system enables the UTC(PL) timescale to achieve a level of accuracy
comparable to some of the best timescales, such as those implemented with hydrogen masers
supplemented by caesium fountains.

The research focuses on two prepared time series, TS1 and TS2, for use with the GMDH NN,
and compares the forecasted values against the BIPM-designated UTC values (xb(t)). The forecasting
results for both time series showed a high level of accuracy, with discrepancies consistently within
+10 ns, and for some periods, even below +6 ns. This indicates that the Polish Timescale is very close
in quality to the best global timescales.

The article also elaborates on the two main factors that influence forecasting quality: the
choice of neural network and the quality of the input data. A key component of the GMDH NN’s
success is its self-organizing nature, which allows it to adapt efficiently to new data and produce
reliable forecasts in real-time, as seen in the ongoing UTC(PL) steering process. This method has
been successfully applied in Poland, allowing for continuous updates to the national timescale,
positioning it among the highest-performing timescales globally

When developing the forecasting algorithm for UTC(K) using a GMDH neural network, the
Polish Timescale was implemented with a commercial caesium atomic clock, achieving a stability of
approximately 107(-14). The author highlighted that leading NMI laboratories typically use hydrogen
masers, often supplemented by caesium fountains, to implement UTC(K). Hydrogen masers offer
superior short-term stability at the 10°(-15) level compared to caesium clocks, which are better for
long-term stability.

The research showed that the GMDH-based forecasting system is versatile, achieving high-
quality predictions for both caesium and hydrogen maser-based timescales. This system has been
integrated into the Polish Timescale UTC(PL), which has demonstrated exceptional accuracy,
particularly since its application in 2016 at the GUM (Central Office of Measures) to control
UTC(PL). The improvements were substantial, contributing to a timescale that is now ranked among
the best globally.

The article aims to assess the effectiveness of the forecasting system applied to the Polish
Timescale (UTC(PL)), based on a method proposed by the author using a GMDH neural network.
This system is implemented on the VCH-1003M hydrogen maser, selected from several available
clocks at the GUM (Central Office of Measures) in Poland. The research demonstrates that the
developed forecasting system can achieve a level of precision for UTC(PL) comparable to the best
global timescales, including those based on hydrogen masers and caesium fountains. The article
emphasizes that the use of this system ensures high-quality timescale accuracy for UTC(PL),
positioning it as one of the top-performing timescales worldwide.

The article describes the construction of the TS1 and TS2 time series, which are essential for
the forecasting system based on the Group Method of Data Handling (GMDH) neural network. These
time series were developed to improve the accuracy of UTC(PL) forecasting. The time series include
phase time values (xa(t)) between the national time scale UTC(k) and the atomic clock, UTC -
UTC(K) values (xb(t)), and additional values (xbr(t)) representing the UTCr - UTC(K).

The research conducted from December 2020 to August 2023 focused on forecasting the
Polish Timescale (UTC(PL)), which is based on the VCH-1003M hydrogen maser. The forecasting
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used the prepared TS1 and TS2 time series and compared the predicted results with actual data
published by BIPM.

The study demonstrated that both time series provided highly accurate forecasts, with
discrepancies between the forecasted values (xbp(t)) and the BIPM data (xb(t)) being minimal, often
within a few nanoseconds. This indicates that the Polish Timescale has remained consistently
accurate, aligning closely with the best global timescales.

An essential part of the developed forecasting system based on the proposed procedure is the
block dedicated to preparing input data for the GMDH neural network (NN) in the form of time series.
The quality of the forecasts heavily depends on how this data is prepared. For the UTC(K) forecasting
research, two time series, TS1 and TS2, were developed, containing data with a one-day interval.

The TS1 time series consists of three data groups: phase time values (xa(t)) between 1 pulse-
per-second signals from the national UTC(k) timescale (UTCk(t)) and the atomic clock (clockk(t)),
xb(t) values representing the difference UTC - UTC(k), and xbr(t) values representing the difference
between UTCr and UTC(Kk). These relationships are defined as:

« 00O(0) = 00oo(m) — Dooooo()
o IIN(D) = OOO(0) — Oooo()
o (D) = OO0 — OO0

The xb(t) values are the data published by the BIPM in their "Circular T" bulletin. Since these
data are published for Modified Julian Dates (MJD) ending in 4 and 9, they are interpolated using the
Hermite polynomial (PCHIP function in MATLAB) to generate daily values. This interpolation helps
extend the number of historical data points, ensuring the GMDH NN has enough training data, as
insufficient data can hinder the training process.

The preparation method for TS2 is similar to TS1, but the data is split differently: the first
group consists solely of xb(t) values, while the second group consists only of xbr(t) values.

The forecasting process involves predicting xb(t) values. Using TS1, the output from the
GMDH NN for a forecast day (tp) is denoted as x1p(tp). By comparing this with the measured xa(tp)
for UTC(k) on that day, the forecast difference (xbp(tp)) is calculated as:

e LO(UD) = D10(UD) — Oo(Um)

For TS2, the forecasting approach is similar, and the results can also be used to correct UTC(K)

values.

Conclusions.

The research demonstrates that the forecasting system based on the GMDH neural network
provides highly accurate predictions for the Polish Timescale (UTC(PL)), enabling it to achieve a
level of precision comparable to the best global timescales. The system's use of hydrogen masers,
along with well-prepared input data and the application of advanced forecasting techniques, ensures
that the accuracy of UTC(PL) remains within a narrow range, often within +£10 nanoseconds.

The developed system has proven to be effective in real-time forecasting and steering of
UTC(PL), which has significantly enhanced its performance. The approach has shown to be
adaptable, with minimal discrepancies between forecasted and actual data, making it a reliable tool
for maintaining precise timekeeping.

The research results indicate that the GMDH neural network is an optimal choice for
forecasting UTC(k) timescales, especially for national metrology institutes (NMIs) that do not have
access to high-cost equipment like caesium fountains. By using this system, such institutions can
achieve high-quality time scale predictions at a significantly lower cost.

Furthermore, the application of this forecasting system has contributed to the Polish Timescale
being classified among the top-performing timescales, demonstrating the practical benefits of
artificial intelligence in metrology. The continued use of this system ensures the ongoing precision
and reliability of UTC(PL), positioning it as a leading example of modern timekeeping technology.
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ROBUST TASK SCHEDULING IN ROBOTICS USING REINFORCEMENT LEARNING.

Abstract: Effective task scheduling plays a crucial role in enhancing performance, productivity, and profitability
across various real-world applications, including production lines, logistics, and transportation systems. While
traditional scheduling methods often rely on heuristics or basic rule-based strategies, the rise of machine learning and
artificial intelligence has spurred increased interest in leveraging these advanced technologies for task optimization.
Among these, reinforcement learning stands out as a promising approach due to its ability to learn from experience and
adjust to dynamic conditions. A frequently overlooked aspect, however, is the selection of optimal algorithm parameters
and the diverse ways in which the environment can be modeled. This study evaluates the potential of reinforcement
learning for task scheduling, offering a detailed analysis that aids in selecting the most effective environment models and
Q-learning parameters. Additionally, the study introduces an automatic parameter selection method based on
optimization algorithms. Despite these improvements, the system's adaptability to environmental changes remains
limited. This observation led the authors to propose a novel Hybrid Q-learning approach, designed to ensure higher
efficiency regardless of varying environmental factors.

Keywords: task scheduling, performance, productivity, reinforcement learning, optimization, Q-learning,
algorithm parameters, environmental adaptability

Introduction:

Effective task scheduling is crucial for enhancing performance, productivity, and profitability
across various fields like manufacturing, logistics, and transportation systems. Traditionally, task
scheduling has relied on heuristics and rule-based methods. However, with the growth of machine
learning and artificial intelligence, there is increasing interest in using these technologies for
optimization. Among these methods, reinforcement learning stands out because it can learn from
experience and adapt to changing conditions. A key element often overlooked is the selection of
optimal algorithm parameters and the modeling of the environment. This study evaluates how
reinforcement learning can improve task scheduling, providing insights into efficient environment
models and Q-learning parameters. Additionally, it proposes an automated selection process using
optimization algorithms. Despite these advancements, the system’s adaptability to environmental
changes remains limited, motivating the authors to develop a Hybrid Q-learning approach that ensures
superior efficiency under varying conditions.

In manufacturing, robotic arms are commonly used for various tasks, including pick-and-place
operations, welding, painting, palletizing, and sorting. Traditionally, robotic arms are programmed
manually due to a lack of advanced automatic algorithms that can deliver consistent, high-
performance results across different processes. The system’s performance, and consequently the
quality of the product, largely depend on the skills of the operator. Additionally, these tasks often
require collaboration between various machines, such as conveyor belts, mobile robots, and other
robotic arms. Although creating a real-world testing environment for development can be costly,
incorporating robotic arms into active production lines for experimentation is not a feasible option.
As an alternative, simulation-based training offers a cost-effective way to generate the required data,
though oversimplifying simulations can lead to discrepancies with real-world performance, resulting
in unsafe behavior when the system is deployed in real robots. To reduce the complexity of robotic
programming, tasks can be broken down into three sub-problems: task planning, task scheduling, and
motion planning.

Task planning involves selecting the sequence of actions needed to accomplish a given task.
Task scheduling determines the optimal order in which tasks are to be performed, while motion
planning focuses on developing collision-free strategies for moving the robot to its target destination.
Most task scheduling problems aim to improve production efficiency through better control or
optimized velocity profiles. Task scheduling is commonly used in fields such as public transport, grid
computing, and cloud systems. It can be categorized into static and dynamic scheduling; the former
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involves pre-scheduling all tasks before execution, whereas dynamic scheduling adjusts decisions in
real-time. Many task scheduling problems are formulated as variations of the Traveling Salesman
Problem (TSP) or the Job Shop Scheduling Problem (JSSP), which are both NP-hard.

To address the task scheduling problem, machine learning techniques, particularly
reinforcement learning (RL), offer a promising solution. Machine learning, a subset of artificial
intelligence, enables systems to learn and improve over time without explicit programming, based on
various types of data. Among the different types of machine learning, reinforcement learning stands
out due to its ability to learn through interactions with the environment, unlike other methods that
rely on predefined datasets. The agent in RL receives feedback in the form of rewards or penalties,
depending on the actions it takes, and these interactions occur over multiple steps, called epochs. At
the end of each epoch, the environment is reset to its initial state. RL has been applied successfully
in diverse fields, such as energy system control, autonomous vehicles, traffic signal management,
cybersecurity, and humanoid robots.

Reinforcement learning algorithms include several variations, such as Q-learning, Deep Q-
learning, and Monte Carlo methods. Q-learning, in particular, is popular for its simplicity and ease of
implementation. This algorithm uses a Q-table, which represents the expected future rewards for
state-action pairs. However, the dimensionality of the Q-table increases exponentially with the
complexity of the problem, making it less suitable for more complex tasks. Although implementing
Q-learning is relatively straightforward, selecting optimal parameters for specific applications is not.
The existing literature often fails to justify or even present the chosen parameters, which can affect
the reproducibility of the results. Despite these challenges, RL continues to gain attention for solving
complex scheduling problems, especially in environments that change dynamically.

In situations where the task's success rate is used as a performance metric, achieving 100%
success is the maximum possible value. This threshold can serve as a stopping criterion for the
learning process. However, when the performance metric involves efficiency, such as the number of
products processed per hour, latency, or movement time, it becomes more challenging to determine
whether the solution provided by an algorithm is optimal and when to halt the learning process.

This issue is particularly relevant to robotic sorting systems, where a robotic arm is tasked
with selecting goods from three independent sources and sorting them into designated destinations.
The use of reinforcement learning (RL) can enhance the efficiency of the robotic arm by addressing
the task scheduling problem. The study focuses on analyzing the impacts of Q-learning parameters,
environment models, and reward functions, with the goal of improving system performance.
Predicting future states is also incorporated to further optimize the robotic sorting process.

In addition to the various combinations of algorithm parameters, choosing the right reward
functions, resetting modes, input parameters, or neural network sizes can be just as important, if not
more so. This paper presents a detailed analysis of these variables and proposes an automatic selection
process using optimization algorithms. Despite achieving optimal parameters for a predefined
environment, the solution may become inefficient when environmental conditions change. These
findings prompted the development of a Hybrid Q-learning approach, which ensures consistent
performance even when environmental factors fluctuate.

The proposed approach for task scheduling in robotic systems is based on an offline learning
process using a highly accurate environmental model. By optimizing this model, it ensures that the
efficiency of the robotic arm is maximized, even when environmental conditions change. The Hybrid
Q-learning approach is particularly effective because it can maintain high performance without
requiring constant adjustments during the operational phase, as opposed to traditional online learning
methods.

Experiments have shown that the Hybrid Q-learning approach significantly outperforms both
static scheduling and online learning algorithms. The offline learning process allows the model to
adapt to changes in the environment more efficiently, ensuring that the scheduling remains optimal
over time. In comparison, online learning methods require longer adaptation periods, during which
the performance is often lower.
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The paper also demonstrates the resilience of this approach, showing that even after significant
environmental changes, the system can quickly adapt and continue to perform effectively. This is
achieved through the use of a pre-tuned Q-table that is capable of handling environmental variability
without losing efficiency.

This method not only provides a robust solution to task scheduling in robotic applications but
also offers a path forward for future enhancements, such as incorporating multi-agent systems and
improving motion planning and collision avoidance algorithms.

Two experiments were conducted to demonstrate the superiority of the proposed Hybrid Q-
learning approach. The first experiment involved the following steps: (i) optimization of the
scheduling using Q-learning based on the nominal parameters of the sorting stand, (ii) after 2 hours,
the environmental parameters were changed to those corresponding to Environment #2, (iii) a 12-
hour relearning period was initiated, and (iv) the final performance was measured using the learned
Q-table.

In the second experiment, the environment parameters were changed after 2 hours, with a one-
hour delay in the changes. The proposed approach was compared to static scheduling (which does
not adjust the task scheduling) and online learning, where either the previous Q-table was used as a
starting point (Online #1), or no prior knowledge was available (Online #2). The comparison involved
calculating the number of sorted products over a sliding window of 250 products, which represents
approximately 30 minutes of operation.

In the first experiment, keeping the scheduling fixed resulted in a decrease in performance,
while the Hybrid Q-learning approach demonstrated superior performance. The Online learning
methods, especially without prior knowledge, were found to be less efficient and resulted in
suboptimal scheduling after the learning period. These results confirm that the Hybrid Q-learning
approach significantly improves the efficiency of task scheduling in dynamic environments,
especially when changes in environment parameters occur during the task execution phase.

To assess the efficiency of the scheduling algorithms, the number of sorted products was
calculated as the average over a sliding window of 250 previously picked products, which
corresponds to approximately 30 minutes of operation. In the first experiment, where no change was
made to the scheduling, the results showed that keeping the scheduling static led to reduced
performance. On the other hand, the Hybrid Q-learning approach demonstrated consistently higher
efficiency. In the second experiment, where environment parameters were altered after two hours, the
proposed Hybrid Q-learning approach still outperformed static scheduling and online learning
methods, with or without prior knowledge of the system's Q-table.

The comparisons reveal that the Hybrid Q-learning approach was particularly advantageous
when the environment changed, as it was able to adapt faster and achieve higher performance than
other methods. The system's performance was tracked across various iterations, showing the
difference in the number of products sorted per hour. Notably, the Hybrid Q-learning method
delivered superior results by allowing the system to adapt during robotic arm movements, thus
optimizing task scheduling in real-time.

In contrast, online learning methods—especially those starting from scratch (Online #2)—
exhibited suboptimal performance due to their slow adaptation to environmental changes. Moreover,
these methods required additional time for learning, reducing their effectiveness in rapidly evolving
scenarios. The static scheduling approach, while more efficient than online methods in some cases,
could not adapt to changes in the environment and therefore was outperformed by the more dynamic
Hybrid Q-learning solution.

These findings highlight the superior efficiency and flexibility of the Hybrid Q-learning
approach in dynamic environments, making it a promising solution for task scheduling problems
where environmental conditions are subject to change.

The paper highlights the significance of selecting an appropriate environment model with
predictive capabilities and tuning the parameters of the Epsilon-Greedy Q-learning algorithm for
effective task scheduling. Three prediction strategies, four reward functions, three resetting modes,
and various robot arm history positions were analyzed to determine the best set of parameters,
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resulting in nearly 31 million possible combinations. The study demonstrates that when the
environment's behavior changes significantly—especially when predictive modes are involved—
there can be a drastic shift in the optimal Q-learning parameters. This emphasizes the need to regularly
update the Q-learning parameters to maintain efficiency under varying conditions.

Based on these findings, the authors propose a Hybrid Q-learning approach, which ensures
high efficiency from deployment to real-world environments by adapting the Q-table using simulation
learning throughout robotic arm operations. Experiments show that online relearning methods require
much more time to adapt, resulting in lower performance during the learning period. In contrast, the
proposed Hybrid Q-learning approach adjusts immediately, maintaining superior performance even
under changing conditions.

Looking ahead, the authors plan to expand this approach to handle multiple robotic arms and
address challenges like motion planning, collision avoidance, and multi-agent systems.

The authors plan to extend their work by focusing on task scheduling in environments with
multiple robotic arms. This future research will explore additional challenges, such as motion
planning, collision avoidance, and the application of multi-agent algorithms. These improvements
aim to further enhance the efficiency and adaptability of task scheduling systems in complex, dynamic
environments.
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ELASTIC CONSTANTS FROM ULTRASONIC DISPERSION IMAGES VIA NEURAL
NETWORKS.

Abstract: This paper introduces a method for determining the isotropic elastic constants of plate-like structures
by leveraging the dispersive characteristics of ultrasonic guided waves combined with neural networks. This is achieved
through the analysis of dispersion images. Two distinct neural network architectures are compared: one utilizing
convolutions and transfer learning based on EfficientNetB7, and another inspired by Vision Transformer approaches. To
support this, both simulated and experimental dispersion images are created, with the former being used for designing,
training, and validating the networks, while the latter serves for testing. During the training phase, various data
augmentation techniques are applied to the simulated data to replicate the artifacts present in the measured data,
enabling the networks to generalize from simulations to real-world measurements. The performance of the trained neural
networks is evaluated on dispersion images from seven different material samples, testing several variations of the
measured images to ensure prediction consistency. The study highlights that neural networks can successfully predict
isotropic elastic constants from experimental dispersion images, relying solely on simulated images for training and
validation, without requiring an initial estimate or manual feature extraction, and regardless of the measurement setup.
Additionally, the paper discusses the effectiveness of the different architectures for extracting information from dispersion
images and introduces a novel image-to-regression visualization technique.

Keywords: ultrasonic, guided waves, neural networks, dispersion images, isotropic elastic constants, transfer
learning, data augmentation, prediction stability

Introduction:

The article discusses a method that utilizes the dispersive behavior of ultrasonic guided waves
(UGWs) along with neural networks to determine the isotropic elastic constants of plate-like
structures through dispersion images. The authors compare two neural network architectures: one
based on convolutional layers with transfer learning using EfficientNetB7, and another using a Vision
Transformer-like approach. To implement this method, both simulated and measured dispersion
images are generated. Simulated images are used to design, train, and validate the neural networks,
while the measured images are used for testing.

During the neural network training, specific data augmentation layers are applied to introduce
artifacts typical in measurement data into the simulated data. These layers allow the neural networks
to extrapolate from simulated data to real-world measurements. The neural networks are trained on
images from seven known materials, and the study tests various variations of the measured images to
ensure the stability of predictions. The results show that the neural networks can predict the isotropic
elastic constants from measured dispersion images using only simulated data for training and
validation, without the need for an initial guess or manual feature extraction, regardless of the
measurement setup. The paper also discusses the suitability of the different architectures for
extracting information from dispersion images and presents an image-to-regression visualization
technique.

This approach promises automation of the material characterization process by eliminating
the need for initial guesses or manual data extraction, and it is applicable across different
measurement setups.

The paper utilizes a semi-analytical numerical simulation method, known as the Scaled
Boundary Finite Element Method (SBFEM), to simulate dispersion images for structures with defined
elastic constants. These simulated dispersion images are generated by solving the eigenvalue problem
of the SBFEM equation for specific wavenumbers, resulting in corresponding frequency values. The
isotropic elastic constants are evenly distributed within the dataset to prevent neural networks from
overfocusing on any particular range. A total of 20,000 dispersion images are generated, covering the
specified range of values, as shown in Table 1. Additionally, a dataset containing 2,000 dispersion
images is randomly distributed for testing purposes.
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The trajectory of the modes of ultrasonic guided waves (UGWSs) within a dispersion image in
the frequency-wavenumber domain is directly proportional to the thickness of the plate. To simplify
the simulation process and facilitate comparison across different plate thicknesses, the axes are
normalized by thickness. This method enhances the robustness of the material characterization by
making the comparison more straightforward. In these simulations, instead of directly using Young’s
modulus and density, two normalized quantities are applied:

Enorm=E/p and prorm=1

where pnorm and the thickness are set to one. This leaves Enorm and Poisson’s ratio as the only
parameters to define the shape of the curves, which the models can learn and predict from the dataset/
The measurement data was recorded using the Verasonics Vantage 64 system, which has a
sampling frequency of 62.5 MHz. A phased array system, the Olympus 2.25-L-64-48X12-A2-P-2.5-
HY with 64 elements, is employed, where the first element excites the ultrasonic guided wave (UGW)
and the remaining 63 elements record it. The resolution along the frequency-wavenumber axis is
limited by the small number of elements and their minimal spacing, especially considering the axis
scaling by thickness in the dispersion images. The thickness of the specimen, a 300 x 300 mm plate,
is measured at each corner using a micrometer screw gauge, and the average value is used to calculate
the material's density.

The data is processed according to the procedures described in previous studies. Initially, a
Tukey window function (with o = 0.3) is applied to the time and space data. The data is zero-padded
to the next larger power of two, ensuring it has at least 213 entries. The 2D Fast Fourier Transform
(FFT) is then applied, shifting the zero frequency to the center. Following this, the absolute values
are taken, and a quarter section of the dispersion image with positive group velocities is selected. The
image undergoes gamma correction and normalization before a 21-time blur filter smooths the
gradients within the pixels. An adaptive threshold function from OpenCV?2 is applied, and the image
is eroded and dilated multiple times to remove noise and adjust the image for further processing,
ultimately resizing it into a 600 x 600 binary array suitable for training the neural networks.

The neural networks are trained using both simulated and real-world data. To enhance the
training process, data augmentation layers are incorporated into the models. These layers randomly
apply augmentations to the simulated data, ensuring unique inputs during each training epoch. This
technique introduces artifacts typical of measurement data into the simulated dataset, allowing the
neural networks to learn how to extrapolate from simulated to measured data. The augmented images
simulate various measurement-related anomalies such as noise and spectral leakage, improving the
model's robustness to real-world variations.

It is crucial that these augmentations are integrated directly into the training process using
TensorFlow's syntax, enabling faster processing with GPU computing. Through these augmentations,
the model becomes more capable of handling imperfections in the measurement data, such as
variations in the mode shapes or artifacts caused by measurement noise. These technigques are shown
to improve prediction accuracy by making the neural networks more resilient to real-world challenges
during the testing phase.

The article explores the use of two advanced neural network architectures for predicting the
isotropic elastic constants from dispersion images of ultrasonic guided waves (UGWs) in plate-like
structures. The two architectures compared are EfficientNetB7, a convolutional neural network
(CNN) with transfer learning, and a Vision Transformer model, both adapted for a regression task.
The networks are trained using simulated dispersion images and validated with real-world data.

A series of data augmentation techniques are employed to simulate measurement artifacts in
the training data, such as noise, dilation, and missing information, ensuring the neural networks can
generalize well when faced with imperfections in the measured data. The models are trained with
TensorFlow, utilizing a combination of Keras-Tuner and Hyperband for hyperparameter
optimization. The performance of these architectures is evaluated using seven different material
samples, with results showing that the Vision Transformer model tends to be more robust to variations
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in the dispersion images, while the EfficientNetB7 model is more sensitive to minor changes in the
data.

The study demonstrates the potential of neural networks for accurately predicting elastic
constants without the need for manual feature extraction or initial guesses, which is a significant
advantage over traditional methods that rely on explicit mathematical models. The article also
discusses how neural networks, especially CNNs and Vision Transformers, are capable of handling
complex, multi-modal information inherent in dispersion images, offering an automated and efficient
approach for material characterization.

The study focuses on using neural networks to predict isotropic elastic constants from
dispersion images, derived from ultrasonic guided wave propagation in plate-like structures. The
models analyzed include EfficientNetB7 and a Vision Transformer model. Both architectures were
adapted from classification tasks to solve this multi-output regression problem.

The training process utilized a mix of simulated and measured dispersion images, with
significant data augmentation techniques to mimic real-world imperfections, such as noise, dilation,
and spectral leakage. These augmentations helped the models generalize better, improving their
ability to predict material properties despite artifacts in the data.

The EfficientNetB7 model, based on convolutional layers, converged faster due to pre-trained
weights but was more sensitive to small changes in the input images. On the other hand, the Vision
Transformer model showed greater robustness to variations and outperformed the EfficientNet model
in prediction stability, particularly in the presence of measurement noise and artifacts.

Additionally, attention mapping techniques, such as Grad-CAM, were adapted for this
regression task to visualize how the models made predictions. This method revealed that the Vision
Transformer model was more capable of utilizing positional information and handling input
variations more effectively than the EfficientNetB7 model.

The models' performance was tested on a range of materials, showing that both architectures
could predict elastic constants with reasonable accuracy. However, the Vision Transformer model
exhibited superior consistency and robustness, suggesting that it is better suited for this type of
problem where positional information within the dispersion images is crucial. This approach, utilizing
neural networks for dispersion image analysis, presents a promising method for automated material
characterization in various industrial applications, especially in the presence of measurement noise
and variations.

The results of the study indicate that both EfficientNetB7 and Vision Transformer models
show high accuracy in predicting isotropic elastic constants, with Mean Absolute Percentage Error
(MAPE) for the simulated dataset at around 2.94% for EfficientNetB7 and 2.13% for Vision
Transformer, respectively. R* values were also high, demonstrating strong model performance. In
particular, the Vision Transformer model was found to be more robust when predicting the elastic
constants from the measured dispersion images, as it demonstrated better consistency in the presence
of noise and variations.

During testing on measured datasets, the models showed some variations in their predictions
depending on the image alterations. The addition of noise and small artifacts in the dispersion images
had a more significant impact on the EfficientNetB7 model, which was more sensitive to such
changes. However, the Vision Transformer model was less affected by these variations,
demonstrating its superior generalization ability in handling noise and measurement artifacts. This
robustness is thought to be due to the Vision Transformer’s capacity to analyze global relationships
in the image, as opposed to the convolutional layers of EfficientNetB7 that focus on local features.

The study highlights the importance of diverse test data for evaluating neural networks, as
models trained on simulated data may perform differently on real-world measurements with
additional noise and artifacts. Both models, despite their differences in architecture, provided similar
accuracy when predicting elastic constants for the material samples, with Vision Transformer slightly
outperforming the EfficientNetB7 model in prediction consistency.

These findings suggest that neural network models, particularly the Vision Transformer, can
be effective tools for material characterization, capable of predicting isotropic elastic constants with
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minimal pre-existing knowledge or manual feature extraction. The approach is promising for
automated applications, and the methods developed could be extended to the analysis of more
complex, anisotropic materials in future studies.

The study introduces an innovative approach for determining isotropic elastic constants using
neural networks to process dispersion images obtained from ultrasonic guided waves (UGWSs). This
method leverages the dispersive behavior of UGWs and applies two different neural network
architectures: EfficientNetB7, a convolutional network with transfer learning, and a Vision
Transformer-like model. These architectures are tested on both simulated and measured dispersion
images, with the simulated data being used for training and validation, and the measured data for
testing.

The training process incorporates various data augmentation techniques to introduce real-
world artifacts, such as noise and spectral leakage, into the simulated data. This allows the neural
networks to generalize better, bridging the gap between the simulated and measured data. The models
are evaluated on seven different material samples to ensure prediction stability across a wide range
of real-world scenarios.

The results show that both models can accurately predict the isotropic elastic constants from
measured dispersion images, even when trained exclusively on simulated data. This method
eliminates the need for initial parameter guesses or manual feature extraction, offering an automated
solution that works independently of the measurement setup. The study also discusses the strengths
of each architecture in handling complex image data, with the Vision Transformer showing greater
robustness in predicting elastic constants across various conditions.
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MONITORING INSECT LARVAE GROWTH WITH REGRESSION CNN AND
KNOWLEDGE TRANSFER.

Abstract: Insect larvae breeding, particularly Tenebrio molitor and Hermetia illucens, has become increasingly
popular. Monitoring their size distribution and growth over time is essential, yet challenging due to the large number of
overlapping larvae in images. To address this, we propose an efficient method for determining larval size distribution
using a regression convolutional neural network (RegCNN) and knowledge transfer. We focused on larval width as the
main parameter, as it is easier to measure in dense scenes, with length (L) and volume (V) estimated indirectly through
regression models. The RegCNN was trained using knowledge transfer to minimize the time-consuming process of
labeling numerous images. The width quartiles were determined using an enhanced multistage phenotyping process based
on computer vision and a segmentation model. This approach required labeling only a few images for calibration. We
evaluated several RegCNN architectures, including pre-trained models (ResNet, EfficientNet) and a custom model. The
best model, ResNet18, achieved an RMSE of 0.131 mm for larval width and 1.12 mm for length, with an R? of 0.870 and
an average inference time of 0.30 seconds. The custom architecture, TenebrioRegCNN_v3, was slightly less accurate but
five times faster in inference time. The results demonstrate the method's potential for real-world breeding applications.

Keywords: insect larvae, size distribution, regression, convolutional neural network, knowledge transfer,
segmentation, phenotyping, real-time monitoring

Introduction:

In recent years, there has been a surge in the popularity of breeding insect larvae, particularly
Tenebrio molitor and Hermetia illucens. A crucial aspect of managing insect larvae breeding is
monitoring their growth and size over time. However, determining the distribution of larvae sizes in
real-time presents a significant challenge, particularly due to the dense scenes in images where larvae
often overlap. To tackle this, we have proposed an efficient method for estimating the size distribution
of larvae. This approach leverages a regression convolutional neural network (RegCNN) combined
with knowledge transfer. The primary parameter measured was the larval width, as it is easier to
detect in dense scenes. Larval length (L) and volume (V) were estimated indirectly using regression
models for these parameters based on width.

The training of the RegCNN model was enhanced using knowledge transfer, which minimized
the need for extensive labeling of images with larvae at various stages of growth. For the training
process, we used width quartiles—Ilower quartile, median, and upper quartile—derived from a
multistage phenotyping approach. This method relied on classical computer vision techniques along
with a larvae segmentation model. This approach only required labeling a small subset of images for
calibration purposes. The study also explored different RegCNN architectures, both pre-trained on
ImageNet (such as ResNet and EfficientNet) and custom models with fewer parameters. The
proposed method was validated by evaluating larvae distributions characterized by width quartiles
ranging from 1.7 mm to 3.1 mm, which correspond to average larval lengths between 16 mm and 28
mm.

This method showed promising results, especially with the ResNet18 model, which achieved
a root mean square error (RMSE) of 0.131 mm for larval width estimation and an average RMSE of
1.12 mm for larval length estimation. The R2 value for the model was 0.870, with an average inference
time of 0.30 seconds per box. The custom architecture, TenebrioRegCNN_v3, had slightly lower
accuracy but was about five times faster in inference time per image. The results validate the potential
of this method for real-world applications in insect larvae breeding.

The acquisition of images from insect breeding boxes was carried out under industrial
breeding conditions, using a machine vision system placed on an automated robot servicing the
breeding process. The images were captured with a color camera (GOX-12401C, JAI, Denmark) with
a resolution of 4096 x 3000 pixels. The camera was positioned at a distance that allowed for imaging
the entire surface of the box, with a resolution of 0.143 mm/pixel. The area was illuminated using

226



cool white LED strips to minimize the impact on the insects during image capture. The raw images
were preprocessed to compensate for shading caused by insufficient lighting and to correct lens
distortion using a calibration method based on a gray pattern and a chessboard pattern.

For the phenotyping of larvae, the process involved segmenting the larvae from the images
using an instance segmentation model. The segmentation was followed by determining the size
parameters for each larva using classical computer vision techniques. Specifically, the width of each
larva was determined from the segmentation mask, and this measurement was used to calculate other
parameters such as length and volume indirectly using linear regression models. These models were
derived from larvae in the dataset D1, with 266 points used for the regression analysis.

To address challenges in segmenting individual larvae from densely packed scenes, synthetic
images were generated by placing individual larvae images onto a background. This approach was
essential for training the instance segmentation model, reducing the need for extensive manual
annotation.

This method of multistage phenotyping was crucial for training the regression convolutional
neural network (RegCNN), which allowed for the prediction of larval size quartiles directly from
input images. This solution significantly reduced the need for manual annotation, requiring only a
few images for calibration purposes. The use of synthetic images and knowledge transfer between
multistage phenotyping and RegCNN training allowed for faster and more accurate predictions in
real-world applications.

The improved multistage phenotyping method used in this study for larval size determination
relies on classical computer vision techniques. This method serves two purposes: it provides pseudo
target values for training the regression convolutional neural network (RegCNN) and helps define the
linear regression models for larval length and volume based on width measurements. The term
"pseudo target values" refers to the size estimates generated through this method, while "true target
values" are those derived from manually annotated larvae images.

Phenotyping can be applied either to a population of larvae within a single breeding box or to
individual larvae. For population phenotyping, the process involves determining the size parameters
such as the lower quartile (Q1), median (Q2), and upper quartile (Q3) for width, length, and volume.
In the case of individual larvae, the process begins with segmenting the larvae from the image using
an instance segmentation model. The next step is to determine the size parameters for each segmented
larva using classical computer vision methods.

The segmentation process provides a binary mask, which precisely defines the larva's location
in the image. For phenotyping, two sets of pixels are defined: those in the binary mask and those
along the contour of the mask. Phenotyping involves several steps, including the creation of a
smoothed skeleton of the larva and the calculation of the width based on sections perpendicular to the
skeleton. The method, which avoids issues found in previous skeletonization techniques, ensures that
the calculated larval width is accurate and robust, even for small or highly curved larvae.

To calculate the larval size parameters, a linear regression model was developed, establishing
relationships between the width of the larva and its length and volume. This approach allows the
indirect calculation of length and volume based on the measured width. The regression models were
trained using larvae extracted from the D1 dataset, providing a reliable basis for determining the size
parameters across different larvae populations.

The segmentation process itself involved an iterative improvement of the instance
segmentation model. Starting with a small dataset of synthetic larvae images, the model was
progressively refined by adding real data and increasing the diversity of the training set. This
multistage development process led to a significant improvement in the model’s ability to segment
larvae accurately across a range of sizes and conditions.

Finally, the use of this improved multistage phenotyping method in conjunction with the
RegCNN for predicting larval size quartiles enables real-time, scalable phenotyping of larvae
populations in industrial breeding environments. This hybrid approach, combining classical image

227



processing techniques with deep learning, provides a powerful solution for efficient monitoring of
larval growth and development.

The width of the larvae was chosen as the main and directly measurable parameter due to its
ease of registration in dense scenes. However, from the breeder's perspective, the length is easier to
assess. Conversely, when assessing the volume or mass gain of the larvae during their growth, volume
becomes the more appropriate parameter. To enable the indirect calculation of length and volume
based on the measured width of the larvae, linear regression models for length (as a function of width)
and volume (as a function of width) were established.

These regression models were derived using larvae images from the D1 dataset, resulting in
266 data points for the regression analysis. The process included determining larval width as the
median of the lengths of sections perpendicular to the skeleton, which was defined by the binary mask
from the segmentation process. Volume was approximated by the sum of cylinder volumes, where
each cylinder represented a section of the larva with its length and width at the corresponding point
of the skeleton. A correction factor, determined experimentally, was applied to refine the calculations
of volume. This approach enabled the estimation of larval length and volume indirectly from the
width, leveraging the relationships established in the linear regression models.

This methodology provides a robust approach for calculating key size parameters (length and
volume) based on a simpler and more reliably measured parameter, larval width, and supports
efficient monitoring of larval growth in breeding environments.

The process of extracting individual larvae images and generating synthetic images plays a
critical role in the multistage phenotyping of larvae. The segmentation of larvae is carried out using
the Mask R-CNN instance segmentation model, which requires a set of labeled images. Labeling real
images is highly time-consuming, especially due to the dense scenes, where larvae overlap
significantly. To address this challenge, synthetic images with automatically generated labels are
used. The generation of synthetic images involves selecting larvae from a prepared pool of individual
larvae images and randomly placing them onto a background. This process is parameterized by the
degree of overlap between larvae instances and the number of larvae to be included in the image.

The pool of larvae instances used for generating synthetic images consists of larvae extracted
from the D1 dataset, which includes 266 individual larvae. These synthetic images are then used to
train the initial larvae segmentation model. The training process allows the model to improve its
ability to accurately segment larvae from new images, even in dense scenes. This approach, described
in detail in [1], model’s performance. The synthetic image generation process provides a foundational
dataset for developing robust instance segmentation models.

In the study, synthetic images were used to train the initial model, which was subsequently
tested and improved through several stages. The use of synthetic images and their automatic labeling
significantly reduced the time and effort required for manual annotation while enhancing the model's
ability to handle dense scenes efficiently. This approach allowed for the development of a larvae
segmentation model capable of being applied in real-world industrial breeding conditions, where
larvae are often densely packed and difficult to segment manually.

The larvae segmentation model was developed using a three-step approach, which
sequentially improved the model's performance. The first step involved training the model on 200
synthetic images created from 266 larvae instances. These images were generated using larvae
extracted from the D1 dataset. In the second step, the trained model was used to infer larvae from the
D3.TRAIN dataset, yielding larval mask proposals for 489 images. This stage increased the object
pool size to 65,000 larvae instances, and 1,000 synthetic images were generated for further model
training. The third step involved training the model on both real images and the synthetic data from
step two, treating the model’s predictions as pseudo labels for the real images.

This approach aimed to minimize user input during training and maximize efficiency by using
a combination of synthetic and real images. The segmentation model was trained with progressively
larger datasets to ensure its robustness in various breeding conditions. The resulting model showed a
significant improvement in larvae segmentation accuracy as the size of larvae increased, with the
model performing better for larger larvae (27-35 mm). The segmentation accuracy was assessed
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using AP50 and F1 scores, where the model showed sufficient accuracy for effective multistage
phenotyping, particularly in detecting and measuring larvae within breeding boxes.

To address the issue of detecting small objects with deep learning models, a correction factor
was introduced to adjust the calculated larval width quartiles. This factor compensates for variations
in detection accuracy depending on the larval size. It was expected that the correction factor would
decrease as the larval width increased. A diagram illustrating this correction factor as a function of
larval width is presented in the text.

The correction factor was calculated based on the D2 dataset, which included manually
labeled larvae instances. Histograms of larval widths were created from both the ground truth data
and the predictions generated by the larvae segmentation model. The correction factor for each width
interval was determined by dividing the histogram value of the ground truth by the predicted value.
Special handling was applied to cases where no predictions were made for a specific width, setting
the correction factor to 1 in these cases. The factor was adjusted at the boundaries of the width range
to maintain consistency.

This correction was necessary to improve the accuracy of the quartile values, especially for
smaller larvae that were often underdetected by the segmentation model. For widths below 2.0 mm,
the correction factor was higher due to the model's difficulty in detecting these smaller larvae. The
correction helped to minimize the overestimation of quartile values for these smaller larvae,
improving the overall accuracy of the model when estimating size parameters. The calibration curve
for the correction factor, as well as the impact on the final quartile calculations, is also discussed in
the text.

In this study, the main challenge addressed was the knowledge transfer between improved
multistage phenotyping based on classical computer vision methods and a regression convolutional
neural network (RegCNN). Knowledge transfer involved training the RegCNN on values derived
from the multistage phenotyping of larvae samples from the D3. TRAIN dataset. For each sample, the
lower quartile (Q1), median (Q2), and upper quartile (Q3) of larval width were determined.
Correction weights were incorporated during the calculation of quartiles, taking into account
observations from earlier sections.

The RegCNN was trained using these quartile values, allowing for the direct estimation of
larval width quartiles without analyzing individual larvae separately. The input to the RegCNN
consisted of 800x800 RGB images, and the model outputted the values for the three quartiles of larval
width. The training process minimized the mean squared error (MSE) loss, with the D3. TRAIN
dataset used for training. Pre-trained convolutional neural networks (CNNs) such as ResNet and
EfficientNet, along with custom architectures, were evaluated.

This approach successfully reduced the manual annotation effort, requiring only a few
manually labeled images for calibration. The final model achieved high accuracy with minimal
inference time, demonstrating its potential for real-time applications in large-scale insect larvae
breeding systems. The use of synthetic images for training the segmentation model further contributed
to the efficiency of the approach.

The regression convolutional neural network (RegCNN) developed in this study enables direct
estimation of larval width quartiles (Q1, median, Q3) from 800800 RGB images without requiring
individual larvae analysis. The model outputs the three quartiles for larval width based on the input
image. During training, the mean squared error (MSE) was minimized, using images from the
D3.TRAIN dataset, which were resized from 1024x1024 to 800800 pixels before input.

Pre-trained deep convolutional neural network architectures, such as ResNet18, ResNet50,
ResNet101, EfficientNet-b0, EfficientNet-b4, and MobileNetv2, were evaluated. Custom CNN
architectures with reduced complexity were also proposed. Fine-tuning was applied to all model
weights, including the convolutional and fully connected (FC) layers. For pre-trained models, the FC
layers were customized depending on the number of neurons in the input layer, with ReLU activation
functions applied between layers.

The custom RegCNN architecture consisted of convolutional blocks followed by an FC block,
where the number of neurons in the hidden layers varied depending on the size of the input layer.
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Training parameters included a learning rate of 0.001, 200 epochs, and an Adam optimizer. The 'batch
size' was adjusted based on the GPU capabilities. Pre-processing involved standardizing pixel
intensity values in the R, G, and B channels according to ImageNet standards.

This setup aimed to efficiently estimate larval width quartiles while minimizing inference
time. The results showed that the RegCNN could be effectively trained using a knowledge transfer
mechanism from multistage phenotyping, requiring only a few manually labeled images for
calibration. This method demonstrated potential for real-time applications in large-scale insect larvae
breeding systems.

The larvae segmentation model's performance was evaluated in terms of the average precision
at 50% intersection over union (AP50) and F1-score across different larval size sets. The results
showed consistent improvements across successive stages of model training. Initially, when trained
only on synthetic images, the model achieved an AP50 of 75.0%, which improved to 79.2% after
further refinement with both synthetic and real images. The greatest improvement was observed in
larvae with smaller sizes (18-23 mm), where the AP50 increased from 61.7% to 72.1%, while for
larger larvae (27-35 mm), the model's accuracy remained high even in the first stage.

In the context of multistage phenotyping, the model's performance was highly sensitive to the
larval size, with better results for larger larvae. This observation highlights the necessity of adjusting
the calculation of quartiles for larval width in dense scenes, where smaller larvae may be
underrepresented or misclassified. These improvements were sufficient to meet the needs of large-
scale breeding systems, where quick and accurate larvae size monitoring is essential. The overall
system demonstrated robust performance with an acceptable trade-off between accuracy and
inference time, especially when processing large numbers of larvae in real-time.

The final validation of the model’s performance was carried out using a variety of metrics,
including the average precision at 50% intersection over union (AP50) and the F1-score. These
metrics were calculated for different larval size sets. The results showed significant improvement
across training stages. In the first stage, where only synthetic images were used, the model achieved
an AP50 of 75.0% on average. After including real images in the second stage, the AP50 improved
to 75.8%, with the most substantial increase observed for smaller larvae (18-23 mm), where the AP50
increased from 61.7% to 72.1%. The largest larvae (27-35 mm) showed high accuracy from the
beginning, with an AP50 of 86.2%.

The final stage of training, which combined both real and synthetic images, led to an average
AP50 of 79.2% and an F1-score of 0.824. For the larval size subset of 27-35 mm, the AP50 reached
86.0%, demonstrating the model’s strength in detecting larger larvae. These results confirmed the
effectiveness of the segmentation model for multistage phenotyping and emphasized the need for
adjustments when calculating quartiles for smaller larvae due to segmentation challenges. The model
was able to detect sufficient larvae instances, enabling accurate size parameter estimation for the
larvae population, even in dense scenes. The achieved metrics were sufficient to support real-time
applications in large-scale insect larvae breeding systems.

The analysis of inference time for the entire pipeline showed significant improvements with
the proposed solution. The CNN-based regressor had the shortest inference time at 0.30 seconds per
box, making it ideal for large-scale breeding applications where quick processing is crucial. In
comparison, the multistage phenotyping method, when analyzing all larvae (approximately 1,300 per
box), had a longer inference time of about 11 seconds per box. The second version of multistage
phenotyping, which limited the number of analyzed larvae to 50 and reduced the area of the analyzed
boxes to 25%, improved inference time to approximately 2.1 seconds per box.

In contrast, the reference method, based on the previous multistage phenotyping technique,
had significantly higher processing times, with inference times reaching up to 217 seconds per box.
This indicates that the proposed CNN-based regressor offers a considerable advantage in terms of
efficiency, especially in scenarios involving large numbers of boxes (>10,000).

The inference time breakdown for the approaches considered revealed that for the CNN
regressor with ROI relevance assessment, 33% of the total time was spent on extracting individual
larvae using YOLOv5m, while 63% and 85% of the time for the two versions of multistage
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phenotyping were spent on larvae segmentation using Mask R-CNN. These results highlight the need
for further improvements in the segmentation step, particularly for Mask R-CNN, which is currently
the bottleneck in the multistage phenotyping approach. Future work may involve replacing Mask R-
CNN with a faster model, such as YOLOVS, to reduce processing times and improve overall
efficiency.

The study demonstrated the effectiveness of a regression convolutional neural network
(RegCNN) for determining the size parameters (width, length, and volume) of insect larvae,
particularly Tenebrio Molitor and Hermetia Illucens. By applying knowledge transfer between
improved multistage phenotyping methods and the RegCNN, the need for extensive manual
annotation was significantly reduced. The multistage phenotyping method provided pseudo target
values used for training the RegCNN, while linear regression models for length and volume were
derived from larval width.

The performance of the CNN regressor was validated using datasets with both pseudo target
values and manually annotated true target values. Results showed that the model achieved a high
coefficient of determination (R? = 0.870), with a root mean squared error (RMSE) of 0.131 mm for
larval width. The proposed method also offered a fast inference time of 0.30 seconds per breeding
box, making it suitable for real-time monitoring in large-scale breeding operations.

The study's findings indicate that this CNN-based solution strikes a balance between accuracy
and processing speed, making it a promising tool for the large-scale, automated monitoring of insect
larvae growth. Further work may focus on optimizing segmentation models and improving processing
times for even faster and more efficient applications in commercial breeding systems.

The study outlines several important directions for future work. These include the
development of models specifically tailored for inference in situations with very low larval densities,
which would address current limitations in performance when larvae are sparse. Additionally, further
reduction in the computational time for multistage phenotyping is a priority. This would allow this
approach to be incorporated into hybrid phenotyping methods, improving efficiency.

Another key area for future development is the creation of methods for larval segmentation

that can achieve similar accuracy across a broader range of larval sizes. Additionally, exploring
amodal segmentation models, which can estimate missing or occluded larvae segments, is another
promising direction. There is also potential in developing reference models for larval growth under
controlled feeding conditions, which could support more accurate monitoring and growth prediction.

Finally, the development of methods for detecting anomalies in larvae growth, based on
reference models, is another critical area for future research. These methods would be crucial in

identifying irregularities in growth patterns. Furthermore, maintaining and adapting the proposed
methods in the face of changes in data characteristics (domain shift) remains an important challenge
for ongoing research.
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HUMAN-IN-THE-LOOP ACTIVE LEARNING FOR TIME-SERIES ELECTRICAL DATA.

Abstract: Advanced machine learning models typically require extensive datasets and high-quality labels to
achieve optimal performance. While measurements are often readily available, the labeling process is frequently a major
bottleneck. Active learning methods aim to address this by utilizing the fact that different data points contribute varying
amounts of information to the model. However, these methods often make unrealistic assumptions, such as relying on an
oracle to provide flawless labels at a consistent cost and effort. In this work, we propose new active learning strategies
for classifying time series data, such as sensor measurements from fluctuating environmental conditions like electricity
usage. These strategies are particularly useful for applications like home energy management, where labeling data can
be a significant challenge. We introduce an innovative acquisition function that incorporates both model uncertainty and
labeling uncertainty, while also addressing class imbalance. Additionally, we propose a stopping criterion that halts the
active learning process once an optimal point is reached, minimizing the labeling effort. We also examine the impact of
labeling errors on model performance and suggest two methods to reduce their effects: (i) a re-labeling approach based
on label similarity, and (ii) a revised loss function that incorporates expert confidence levels. Our approach is validated
through energy disaggregation tasks in a real-world setting with three domain experts. The results show that our
methodology significantly enhances the performance of algorithms applied to new domains, reducing the number of
labeled samples required—by up to 61% for dishwashers and 93% for kettles.

Keywords: machine learning, datasets, labeling, active learning, time series, classification, uncertainty, energy
management

Introduction:

The first part of the text describes the challenges and solutions in applying machine learning
to time-series data, especially for electrical measurements in energy management applications. It
explains that advanced machine learning algorithms often require large datasets with accurate labels
to achieve optimal performance. However, while measurements are easy to collect, the labeling
process is a bottleneck. Active learning methods address this by selecting the most informative data
points for labeling, reducing the labeling effort. These methods exploit the fact that not all samples
contribute equally to model performance. However, many active learning approaches make
unrealistic assumptions, such as the availability of error-free labels at no extra cost.

The paper proposes a novel active learning approach for classifying time-series
measurements, typically from sensors measuring fluctuating environmental conditions such as
electricity consumption. This method is especially useful in home energy management, where
labeling data can be difficult. The authors introduce an acquisition function that accounts for both
model uncertainty and labeling uncertainty, ensuring balanced class distribution. A stopping criterion
is also proposed, which halts the active learning process once the optimal point is reached, minimizing
labeling effort. The paper also explores the impact of labeling errors and presents two methods to
mitigate them: (i) a re-labeling mechanism based on label similarity, and (ii) a revised loss function
that incorporates expert confidence levels.

The paper outlines the development of a human-in-the-loop active learning approach for time-
series data, specifically focused on electrical measurements from non-intrusive load monitoring
(NILM). The core idea is to address the challenges of labeling large datasets for machine learning
models by integrating human feedback into the active learning loop. This method involves using
human experts as a source of annotations, but unlike typical active learning models, it accounts for
potential human errors in labeling. The process works by first training a model on a small labeled
dataset, then iteratively selecting the most informative and diverse samples from a larger pool of
unlabeled data. These selected samples are then labeled by experts and added to the model for further
training.

The methodology includes a novel acquisition function, designed to balance class distribution
while considering both model uncertainty and labeling uncertainty. To minimize unnecessary
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labeling, a stopping criterion is introduced to halt the learning process once the model achieves
satisfactory performance. The approach also addresses potential errors in labeling by implementing
mechanisms for re-labeling and by incorporating expert confidence levels into the labeling process,
ensuring that uncertain or noisy labels are appropriately handled.

In real-world applications, this approach was tested on energy disaggregation tasks using
publicly available datasets. The experiments showed that the proposed method significantly reduces
the amount of labeled data required while maintaining or even improving model performance,
especially in scenarios where labeling errors could occur. This human-in-the-loop framework
enhances the model's ability to generalize to new, unseen data, demonstrating its effectiveness in
reducing labeling effort and improving model reliability in dynamic, real-world settings.

The paper introduces a human-in-the-loop active learning (HITL-ML) methodology applied
to time-series data, specifically for non-intrusive load monitoring (NILM). This method is aimed at
smart home energy management, addressing challenges related to labelling and model performance.
The system involves a process where the machine selects data samples to query, and a human expert
labels these samples. The expert also provides a confidence level for each label, which helps in
handling potential errors in the labels. This approach ensures that the machine can learn incrementally
until a stopping criterion is met.

The paper explores energy disaggregation, a process that separates a building’s aggregate
energy consumption into individual appliance usage. This fine-grained data can help with energy
conservation and demand response strategies. While deep learning models are typically used in
NILM, they require large labelled datasets for good performance, which are costly and time-
consuming to obtain. The study acknowledges this challenge and introduces strategies for reducing
the labelling effort.

By employing transfer learning techniques, the proposed method aims to improve the model’s
performance in new, unseen homes, even with minimal labelled data. Additionally, the paper
discusses how to mitigate the impact of labelling errors through re-labelling and expert confidence
mechanisms. These innovations reduce the need for extensive labelled data and enhance model
stability and transferability across different environments.

This methodology is validated in real-world scenarios, using publicly available datasets and
employing a deep neural network architecture designed for NILM. The results show that the approach
significantly improves the performance of pre-trained models when applied to new homes, ensuring
that even with limited labelled data, high-quality predictions can still be achieved.

In this study, the authors present an innovative active learning framework specifically
designed for time-series electrical measurement data, typically gathered through non-intrusive load
monitoring (NILM) systems used in energy disaggregation. The goal is to minimize the labeling effort
required while maintaining high model performance. The process starts by training a model using a
small set of labeled data, which is then expanded by selecting the most informative unlabeled samples
for labeling through active learning. The acquisition function identifies which samples are most
valuable to label, based on criteria such as uncertainty or informativeness.

The paper proposes a unique acquisition function that balances high-uncertainty samples with
those that contribute to model diversity, ensuring that the model learns from a broad set of data. This
acquisition function is designed to prioritize samples where the model’s predictions are uncertain, but
also includes samples that add variety to the dataset, particularly when the model starts to show high
confidence. Additionally, a stopping criterion is introduced to prevent unnecessary labeling. The
criterion terminates the active learning process once enough informative samples have been labeled,
reducing the total labeling effort required.

Another key aspect of the approach is the use of expert confidence levels during labeling. By
incorporating confidence scores from the experts, the model accounts for the potential variability in
label quality, giving more weight to highly confident labels during training. The proposed
methodology also includes a re-labeling mechanism that allows for correcting errors in labels based
on the model’s uncertainty, further enhancing the quality of the training data. The results demonstrate
the effectiveness of these techniques in real-world NILM applications, where labeling data can be
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both costly and time-consuming. The active learning strategy significantly improves model
performance with fewer labeled samples, making it a valuable tool for applications in energy
management and other domains requiring large datasets for model training.

The study evaluates the impact of labeling errors on the classification performance of time-
series electrical data in the context of non-intrusive load monitoring (NILM). When errors are
introduced during the labeling process, two main types of mistakes are considered: false positives and
false negatives. The analysis reveals that false negatives—where an appliance activation is missed—
have a more significant negative impact on the model's performance compared to false positives. This
is because false negatives introduce additional negative samples that make it more difficult for the
model to identify the correct patterns, while false positives do not drastically change the model’s
ability to recognize important appliance activations.

The effectiveness of a re-labeling mechanism to address these errors is demonstrated, with
improvements in performance when mis-labeled samples are re-evaluated. The re-labeling
mechanism targets samples that the model has identified as potentially mislabeled, based on a low
match rate between predicted and actual labels. Once these samples are sent back for re-labeling, the
accuracy of the dataset improves, which in turn enhances the model's classification performance.

Additionally, the study explores the use of expert confidence levels to reduce the impact of
labeling errors. By incorporating confidence levels into the loss function during model training, the
model adjusts its learning process based on the certainty of the expert's labels. This helps in mitigating
the effects of potentially erroneous labels, especially when the data is noisy and the labels are less
distinct. The results confirm that using confidence levels in the training phase improves model
performance, particularly for appliances with less distinct activation patterns.

The experiments aim to evaluate the effectiveness of the proposed acquisition function,
stopping criteria, and the human-in-the-loop active learning approach for classification of time-series
electrical measurement data, particularly in the context of non-intrusive load monitoring (NILM).
The primary goal is to assess the impact of the new acquisition function against traditional
benchmarks and to test the re-labelling mechanism's effectiveness.

In the first experiment, the focus is on transfer learning with labels obtained via submetering,
where samples from a query pool are labeled using submetered electricity consumption
measurements. This experiment simulates labeling errors, including false positives and false
negatives, to evaluate how the proposed approach handles inaccuracies. By applying the acquisition
function, which incorporates model uncertainty and class balancing, the active learning process
selects the most informative samples for labeling. This ensures the model learns from diverse data
points, and the re-labelling mechanism can correct any erroneous labels. Additionally, simulated
confidence levels are used to mitigate the effects of labeling errors, emphasizing the importance of
expert confidence when providing labels.

The second experiment moves from simulated to real-world conditions, where experts provide
labels during the active learning process. In this case, the quality of the labels is assessed based on
the expert's confidence level, assuming that lower confidence correlates with a higher likelihood of
error. This setup mimics a real-world scenario where labeling can be subjective and error-prone. The
results highlight the importance of incorporating expert confidence into the learning process,
demonstrating that models can be significantly improved even with a relatively small number of
labeled samples.

Both experiments utilize a user interface developed to assist experts in the labeling process.
This interface displays time-series data, allowing experts to quickly annotate windows of electrical
consumption with confidence levels. The user-friendly design helps facilitate accurate and efficient
labeling, which is crucial for the success of the active learning approach in real-world applications.

The results from both experiments show that the proposed methods effectively reduce labeling
effort, improve model performance, and ensure the model can adapt to new, unseen data with minimal
labeling.

The study explores the performance of different acquisition functions used in active learning
for non-intrusive load monitoring (NILM). Specifically, it compares the proposed acquisition
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function, which incorporates model uncertainty and class balancing, with well-established
benchmarks such as pool-based and stream-based uncertainty, BADGE, and CLUE. The results show
that the proposed method outperforms other functions in terms of F1-score, especially for appliances
with challenging signatures, such as kettles and microwaves, in the REFIT house 5 dataset.

The experiments also highlight the effectiveness of the proposed stopping criterion, which
minimizes labeling effort while maintaining performance. By halting the active learning process once
the model reaches an optimal performance point, this criterion significantly reduces the need for
further labeling with only a slight performance trade-off. This early stopping method is shown to save
considerable effort in labeling without compromising the model's accuracy.

Additionally, the paper examines the impact of labeling errors, particularly false negatives
and false positives, on model performance. It is demonstrated that false negative errors (mislabeling
appliance activations as non-activations) are particularly detrimental, especially for appliances with
short activation durations, such as kettles. On the other hand, false positive errors (mislabeling non-
activations as activations) are less impactful, as they typically do not cause the model to forget
previously learned patterns. The study further evaluates a re-labeling mechanism that improves model
performance by correcting erroneous labels, particularly when false negatives are present.

Finally, the integration of expert confidence into the labeling process is tested. This
mechanism assigns greater weight to labels given by experts with higher confidence, thus improving
the reliability of the labeled data and enhancing the model's performance. The results from these
experiments provide valuable insights into how human-in-the-loop strategies can significantly
improve active learning for NILM, even in the presence of labeling errors.

The experiments evaluate the performance of the proposed active learning acquisition
function by comparing it to established benchmarks. In this study, different methods such as pool-
based uncertainty, stream-based uncertainty, BADGE, and CLUE are tested. The proposed method,
which incorporates both model uncertainty and class balancing, shows comparable results to these
benchmarks, achieving high F1-scores while reducing the number of labeled samples. Notably, the
proposed method efficiently handles the challenge of selecting informative samples, balancing the
trade-off between early-stage performance improvement and long-term learning stability.

Additionally, the paper introduces a stopping criterion designed to minimize labeling effort
once the model has achieved optimal performance. This approach effectively reduces the need for
continued labeling while maintaining accuracy, showing minimal performance loss after halting. The
stopping points are determined based on the number of high-uncertainty samples present in the query
pool. This method significantly saves labeling resources without compromising the performance of
the model.

Furthermore, the impact of labeling errors is explored, specifically focusing on false negative
and false positive errors. The study shows that false negatives—incorrectly labeling appliance
activations as non-activations—have a larger negative impact on performance, particularly for
appliances with brief activation periods. The re-labeling mechanism introduced in the study helps
correct these errors, thus enhancing the model's robustness and accuracy. Lastly, the inclusion of
expert confidence levels in the labeling process further improves model performance, especially in
the presence of noisy or challenging samples. This approach is validated through real-world
experiments, where even with labeling errors, the model shows improved performance through the
use of active learning strategies.

The experiment results, shown in figures and tables, compare the performance of the proposed
active learning acquisition function with various state-of-the-art methods. The main goal is to reduce
labeling efforts while maintaining or improving model accuracy for non-intrusive load monitoring
(NILM). The results reveal that the proposed function significantly reduces labeling effort by
selecting more informative samples and stopping the process at an optimal point. Specifically,
labeling effort is reduced by up to 93% for certain appliances in the UK-DALE dataset, and between
61% and 88% in the REFIT dataset.

The results also demonstrate that even when errors, such as false positives and false negatives,
are introduced into the labeling process, the active learning methodology continues to enhance model
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generalization across different datasets. The proposed re-labeling mechanism further improves the
model by identifying potentially erroneous labels and correcting them. Moreover, incorporating
expert confidence into the process prevents a decline in performance due to the accumulation of
inaccurate labels. These results validate the effectiveness of the human-in-the-loop approach,
particularly in real-world scenarios where labeling can be error-prone.

Furthermore, the performance of the acquisition function is compared to traditional methods
like pool-based and stream-based uncertainty functions, as well as more advanced techniques such as
BADGE and CLUE. The proposed approach shows competitive or superior results, especially in
terms of achieving high F1-scores with fewer labeled samples. The stopping criterion also plays a
crucial role in preventing unnecessary labeling, showing that early stopping leads to minimal
performance loss with significant resource savings.
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GAN-BASED INVERSE DESIGN OF SOFT MORPHING COMPOSITE BEAMS.

Abstract: Designing structures with customized properties presents a significant challenge due to the multitude
of potential solutions that can meet specified criteria. In the case of morphing composite beams, for instance, various
fabrication strategies are possible, as parameters such as material, geometry, and actuation mechanisms can be altered.
Additionally, these problems often involve strong nonlinearities arising from large deformations. To address these
complexities, we introduce a generative adversarial network (GAN)-based inverse design framework tailored for the
development of soft composite beams capable of morphing into predefined shapes and executing intricate motions. Our
method leverages composite materials comprising both passive and active layers, which deform into target configurations
due to strain mismatches driven by non-uniform geometric and material properties combined with temperature-induced
actuation. To expedite the exploration of the design parameter space, we devised a mechanical analog — a simplified
""toy model" — that replaces thermal actuation with the mechanical stretching of highly elastic active layers. This analog
allows for faster testing and evaluation of design parameters. Through experimental and numerical validation, we
demonstrated the efficacy of our approach. The generator component of the GAN takes target shapes as inputs and
outputs the corresponding fabrication parameters for creating composite beams that autonomously deploy into desired
configurations upon release. Furthermore, we extended this methodology to produce design parameters for composite
beams capable of complex, temperature-actuated movements. Our data-driven framework is both straightforward and
robust, offering solutions to intricate design challenges. It holds promise for advancing the development of soft robotics
and smart deployable structures, paving the way for innovative applications in these domains.

Keywords: inverse design, composite beams, generative adversarial networks, morphing structures, strain
mismatch, active layers, soft robotics, deployable structures

Introduction:

The design of structures with specific, customized properties often presents significant
challenges, primarily due to the existence of multiple possible solutions that can fulfill the same set
of prescribed conditions. This complexity becomes even more pronounced in scenarios such as the
creation of morphing composite beams. In these cases, the choice of materials, geometric
configurations, and actuation methods introduces a broad spectrum of potential fabrication solutions.
Compounding this challenge is the inherent nonlinearity of such problems, driven by the large
deformations that occur during the structural transformation.

To tackle these issues, we propose a novel method based on generative adversarial networks
(GANSs) to facilitate the inverse design of soft composite beams. These beams are engineered to
morph into predefined shapes and perform intricate, prescribed motions. Our approach incorporates
the use of layered composite materials, consisting of both passive and active layers. The deformation
into target shapes is achieved through strain mismatches caused by non-uniform geometric and
material properties, in conjunction with temperature-induced actuation.

To expedite the exploration of the parametric space and streamline the validation of our
method, we developed a simplified mechanical analog. This "toy model" uses mechanical stretching
of highly elastic active layers to mimic the effects of heating and cooling. Through experiments and
simulations, we demonstrate the efficacy of this model. The generator component of the GAN
receives target shapes as inputs and outputs corresponding design parameters, enabling the fabrication
of composite beams that self-deploy into the desired configurations upon release.

The second part of the text describes the concept and challenges of designing deployable
beams with predefined shapes. In this approach, the target final configurations of the structure are
known in advance, while the fabrication parameters required to achieve these configurations remain
to be determined.

The foundational idea involves starting with a flat, thin elastic material layer. This base layer
is then bonded with pre-stretched layers, which are strategically placed either on its top or bottom
surface to induce specific curvatures. These pre-stretched layers store elastic potential energy that
drives the deformation of the composite beam into its intended shape once released. The design
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parameters—such as the amount of pre-stretch, layer dimensions, and material properties—must be
carefully optimized to achieve the desired outcomes.

A key innovation of this method is training a neural network model, specifically a generator
network, to predict the required design parameters for the target shapes. These parameters include the
amount of pre-stretch, the dimensions of each layer, and the material’s modulus of elasticity. The
generator network accepts the target shape as input and provides a detailed set of fabrication
parameters that ensure the structure morphs into the intended configuration.

Although this model currently focuses on single-use deformations (non-reversible morphing),
it provides a practical proof-of-concept for designing deployable structures. The same principles
could be extended to reversible mechanisms, such as heat-actuated systems, where the structure
returns to its original state upon cooling.

This simplified system not only allows for the rapid testing of design principles but also lays
the groundwork for more complex applications in smart materials and deployable systems, including
soft robotics and adaptive structures.

Next part introduces the generative adversarial network (GAN)-based model developed for
the inverse design of morphing structures. The GAN architecture comprises three interconnected
neural networks: the generator, the critic, and a pre-trained simulator. These components work
together to produce feasible design parameters that enable the fabrication of deployable composite
beams.

The generator network is responsible for creating candidate solutions for the design
parameters based on the input target shapes. It takes a normalized representation of the target
curvature, combined with random noise, to explore diverse design possibilities. The critic network
evaluates the feasibility of these generated parameters by comparing them to a library of known
feasible design samples. Through this adversarial process, the generator learns to produce realistic
and functional outputs.

To enhance accuracy, the GAN framework integrates a pre-trained simulator network. This
simulator predicts the expected shape of the composite beam based on the proposed design
parameters. By incorporating this additional layer, the model ensures that the generated solutions
closely align with the target shapes. The overall training process balances two key objectives:
feasibility (ensured by the critic network) and shape accuracy (guided by the simulator network).

The generator network architecture includes dense layers interspersed with batch
normalization and activation functions, designed to output five critical design parameters. These
parameters include layer dimensions, pre-stretch values, and material elasticity. The critic network,
with its leaky ReLU activations, focuses on identifying non-feasible designs and guiding the
generator to refine its outputs. The simulator network, resembling an inverted generator structure,
bridges the gap between the design parameters and the physical realization of the target shapes.

The training dataset, created specifically for this model, includes thousands of pairs of design
parameters and corresponding shape representations. This comprehensive dataset enables the neural
networks to learn the intricate relationships between input design variables and the resulting beam
shapes. Training involves alternating updates to the generator and critic networks, ensuring
convergence to a reliable solution.

This innovative approach demonstrates the potential of GAN-based frameworks to address
complex inverse design challenges. By generating accurate and feasible design parameters, the model
enables the rapid prototyping and fabrication of morphing composite beams with applications in soft
robotics, adaptive systems, and other advanced engineering domains.

This part focuses on the experimental fabrication of morphing composite beams using the
design parameters generated by the GAN-based model. The fabrication process begins with creating
silicone sheets of varying thicknesses using 3D-printed molds. These sheets serve as the foundational
materials for constructing composite beams.

Each active layer is carefully cut and stretched according to the generated design parameters,
which dictate the required dimensions and pre-stretch values. The stretched layers are then bonded to
a base layer using a silicone-based polymer adhesive to ensure a strong and durable connection. To
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maintain alignment during bonding, an apparatus consisting of 3D-printed parts, threaded rods, and
nuts is employed. This setup allows precise control over the stretching and placement of the active
layers.

The fabrication process involves positioning the pre-stretched layers on the base layer,
applying adhesive to the segment length, and securing the assembly with an acrylic plate and weights
to prevent misalignment. Once the adhesive cures, excess material is trimmed, and the composite
beam is released to deform into its target shape.

This methodical approach ensures that the fabricated beams closely resemble the target
configurations generated by the GAN model. The results validate the effectiveness of the model in
producing design parameters that translate into physical structures with the intended morphing
capabilities. Moreover, this fabrication workflow serves as a scalable and efficient process for
developing soft, deployable composite beams for advanced applications.

The process began by defining a set of target shapes, including complex configurations such
as waves, spirals, and circular forms, which served as inputs for the trained GAN model. The
generator network produced the design parameters necessary to fabricate these shapes, demonstrating
its ability to handle diverse and intricate geometries.

Fabricated composite beams were optically scanned and analyzed to compare their final
configurations with the target shapes. The results revealed excellent alignment between the predicted
and fabricated shapes, with minimal deviations. These deviations were attributed to minor
inaccuracies during the fabrication process, such as slight errors in cutting, bonding, or stretching the
active layers. Despite these challenges, the generated parameters consistently led to high-quality
morphing beams.

To further validate the model, creative shapes inspired by line art and handwritten designs
were used. The GAN model successfully generated parameters for these unique configurations,
showcasing its versatility. Additionally, the efficiency of the approach was highlighted by its ability
to generate thousands of design parameter combinations in seconds, a significant improvement over
traditional methods like evolutionary algorithms.

The study also included numerical comparisons of curvature radii, showing strong agreement
between the generated, simulated, and experimentally measured values. This robust performance
underscores the model's capability to handle complex inverse design problems, ensuring that the
fabricated beams meet precise specifications.

Overall, the results demonstrate the potential of this GAN-based approach for designing and
fabricating deployable composite structures with practical applications in areas such as soft robotics,
adaptive systems, and advanced engineering solutions.

Next part explores the extension of the GAN-based framework to design morphing composite
beams capable of achieving complex, temperature-actuated motions. This advanced implementation
replaces the pre-stretch parameter with the coefficient of linear thermal expansion, allowing the
beams to morph in response to controlled heating or cooling.

In this scenario, active layers are positioned either above or below the base layer, with their
deformation controlled by thermal loads. For instance, cooling the active layer on top induces positive
curvature, while heating it produces the opposite effect. This adaptation enables the creation of beams
that transition seamlessly between two or more predefined shapes based on temperature changes.

To demonstrate this capability, two morphing beams were designed. The first beam shifted
from a home position at a lower temperature to an end position at a higher temperature. Similarly, the
second beam showcased continuous motion between two target shapes as the temperature was
gradually increased. The generated design parameters for these configurations ensured consistent
geometric and material properties across all segments, with temperature being the sole variable.

Numerical simulations and experimental validation confirmed the model's effectiveness.
Despite minor deviations caused by inherent fabrication constraints, the results closely matched the
target configurations. This demonstrates the model's ability to generate reliable and accurate design
parameters for complex morphing motions.
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This extended approach highlights the versatility and robustness of the GAN-based
framework in addressing diverse inverse design challenges. It paves the way for innovative
applications in soft robotics, smart materials, and deployable systems, where temperature-actuated
motions play a critical role in functionality and adaptability.

Provides a summary of the research and highlights the achievements of the proposed method
for designing morphing composite beams. The study addressed the inverse design problem, where
the desired target shape of a self-deployable composite beam was predefined, but the necessary
fabrication parameters were unknown. By employing a machine-learning-driven approach, the
research introduced a robust generative adversarial network (GAN)-based framework to tackle this
challenge.

The core of the method involved three interconnected neural networks: a generator to propose
design parameters, a critic to ensure feasibility, and a simulator to validate the accuracy of these
parameters. Together, these networks worked seamlessly to generate fabrication guidelines for
composite beams that morph into specified shapes upon deployment. This data-driven model
leveraged strain mismatch in composite materials as a source of potential energy, eliminating the
need for external stimuli to trigger the shape transformation.

The experimental validation showcased the effectiveness of this approach. Several composite
beams were fabricated using the generated parameters, and their shapes closely aligned with the
predefined targets. The minimal deviations observed were primarily attributed to practical constraints
during the fabrication process, such as minor inaccuracies in layer bonding or material handling.

The study also explored more complex applications, including temperature-actuated
morphing beams capable of transitioning between multiple shapes. This extension demonstrated the
adaptability of the GAN-based framework in addressing diverse and challenging design problems.

The proposed method opens new avenues for creating advanced morphing structures,
including deployable systems and soft robotics, that combine simplicity in fabrication with high
functionality. Its ability to handle complex inverse design tasks with speed and precision underscores
its potential for practical implementation in engineering and materials science.
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